ﻻ يوجد ملخص باللغة العربية
We use high-resolution angle-resolved photoemission spectroscopy to investigate the electronic structure of the antiferromagnetic heavy fermion compound CePt2In7, which is a member of the CeIn3-derived heavy fermion material family. Weak hybridization among 4f electron states and conduction bands was identified in CePt2In7 at low temperature much weaker than that in the other heavy fermion compounds like CeIrIn5 and CeRhIn5. The Ce 4f spectrum shows fine structures near the Fermi energy, reflecting the crystal electric field splitting of the 4f^1_5/2 and 4f^1_7/2 states. Also, we find that the Fermi surface has a strongly three-dimensional topology, in agreement with density-functional theory calculations.
The three-dimensional electronic structure and Ce 4f electrons of the heavy fermion superconductor CePt2In7 is investigated. Angle-resolved photoemission spectroscopy using variable photon energy establishes the existence of quasi-two and three dimen
In this document, I present a personal view on the heavy-fermion problem, within a phenomenological approach guided by experiments. This review presents a set of historical works which established the ground bases of the thematic during the last deca
We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CcmMnIn3m+2n (with M =Co, Rh, Ir, and Pt, m=l, 2, n=0 - 2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Thr
We report 125Te-NMR studies on a newly discovered heavy fermion superconductor UTe2. Using a single crystal, we have measured the 125Te-NMR Knight shift K and spin-lattice relaxation rate 1/T1 for fields along the three orthorhombic crystal axes. The
We present a detailed quantum oscillation study of the Fermi surface of the recently discovered Yb-based heavy fermion superconductor beta-YbAlB4 . We compare the data, obtained at fields from 10 to 45 Tesla, to band structure calculations performed