ﻻ يوجد ملخص باللغة العربية
Channel estimation and signal detection are essential steps to ensure the quality of end-to-end communication in orthogonal frequency-division multiplexing (OFDM) systems. In this paper, we develop a DDLSD approach, i.e., Data-driven Deep Learning for Signal Detection in OFDM systems. First, the OFDM system model is established. Then, the long short-term memory (LSTM) is introduced into the OFDM system model. Wireless channel data is generated through simulation, the preprocessed time series feature information is input into the LSTM to complete the offline training. Finally, the trained model is used for online recovery of transmitted signal. The difference between this scheme and existing OFDM receiver is that explicit estimated channel state information (CSI) is transformed into invisible estimated CSI, and the transmit symbol is directly restored. Simulation results show that the DDLSD scheme outperforms the existing traditional methods in terms of improving channel estimation and signal detection performance.
This paper develops novel deep learning-based architectures and design methodologies for an orthogonal frequency division multiplexing (OFDM) receiver under the constraint of one-bit complex quantization. Single bit quantization greatly reduces compl
Phase Modulation on the Hypersphere (PMH) is a power efficient modulation scheme for the textit{load-modulated} multiple-input multiple-output (MIMO) transmitters with central power amplifiers (CPA). However, it is difficult to obtain the precise cha
In this paper, we study the equalization design for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems with insufficient cyclic prefix (CP). In particular, the signal detection performance is severely impa
In the past decade, sparse and low-rank recovery have drawn much attention in many areas such as signal/image processing, statistics, bioinformatics and machine learning. To achieve sparsity and/or low-rankness inducing, the $ell_1$ norm and nuclear
In this paper, we investigate the model-driven deep learning (DL) for MIMO detection. In particular, the MIMO detector is specially designed by unfolding an iterative algorithm and adding some trainable parameters. Since the number of trainable param