ﻻ يوجد ملخص باللغة العربية
We theoretically investigate ground-state properties of a three-component Fermi gas with pairwise contact interactions between different components near a triatomic resonance where bound trimers are about to appear. Using variational equations for in-medium two- and three-body cluster states in three dimensions, we elucidate the competition of pair and triple formations due to the Fermi surface effects. We present the ground-state phase diagram that exhibits transition from a Cooper pair to Cooper triple state and crossover from a Cooper triple to tightly bound trimer state at negative scattering lengths. This three-body crossover is analogous to the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover observed in a two-component Fermi gas. We predict that the threshold scattering length $a_{-}$ for three-body states can be shifted towards the weak-coupling side due to the emergence of Cooper triples.
Three-body recombination is a phenomenon common in atomic and molecular collisions, producing heating in the system. However, we find the cooling effect of the three-body recombination of a 6Li Fermi gas near its s-wave narrow Feshbach resonance. Suc
We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously nonzero, in stark contrast to
The formation of bosonic bound states underlies the formation of a superfluid ground state in the many-body phase diagram of ultracold Fermi gases. We study bound-state formation in a spin- and mass-imbalanced ultracold Fermi gas confined in a box wi
In one spatial dimension, quantum systems with an attractive three-body contact interaction exhibit a scale anomaly. In this work, we examine the few-body sector for up to six particles. We study those systems with a self-consistent, non-perturbative
Ultracold gases of three distinguishable particles with large scattering lengths are expected to show rich few-body physics related to the Efimov effect. We have created three different mixtures of ultracold 6Li atoms and weakly bound 6Li2 dimers con