ترغب بنشر مسار تعليمي؟ اضغط هنا

Atom-Dimer Scattering in a Three-Component Fermi Gas

133   0   0.0 ( 0 )
 نشر من قبل Thomas Lompe
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultracold gases of three distinguishable particles with large scattering lengths are expected to show rich few-body physics related to the Efimov effect. We have created three different mixtures of ultracold 6Li atoms and weakly bound 6Li2 dimers consisting of atoms in three different hyperfine states and studied their inelastic decay via atom-dimer collisions. We have found resonant enhancement of the decay due to the crossing of Efimov-like trimer states with the atom-dimer continuum in one mixture as well as minima of the decay in another mixture, which we interpret as a suppression of exchange reactions of the type |12>+|3> -> |23>+|1>. Such a suppression is caused by interference between different decay paths and demonstrates the possiblity to use Efimov physics to control the rate constants for molecular exchange reactions in the ultracold regime.



قيم البحث

اقرأ أيضاً

We investigate a mixture of ultracold fermionic $^{40}$K atoms and weakly bound $^{6}$Li$^{40}$K dimers on the repulsive side of a heteronuclear atomic Feshbach resonance. By radio-frequency spectroscopy we demonstrate that the normally repulsive ato m-dimer interaction is turned into a strong attraction. The phenomenon can be understood as a three-body effect in which two heavy $^{40}$K fermions exchange the light $^{6}$Li atom, leading to attraction in odd partial-wave channels (mainly p-wave). Our observations show that mass imbalance in a fermionic system can profoundly change the character of interactions as compared to the well-established mass-balanced case.
We use the composite boson (coboson) many-body formalism to tackle scattering lengths for cold fermionic atoms. We show that bound dimers can be taken as elementary entities provided that fermion exchanges between them are treated exactly, as can be done through the coboson formalism. This alternative tool extended to cold atom physics not only makes transparent many-body processes through Shiva diagrams specific to cobosons, but also simplifies calculations. Indeed, the integral equation we derive for the atom-dimer scattering length and solve by restricting the dimer relative motion to the ground state, gives values in remarkable agreement with the exact scattering length values for all fermion mass ratios. This remarkable agreement also holds true for the dimer-dimer scattering length, except for equal fermion masses where our restricted procedure gives a value slightly larger than the accepted one ($0.64a_d$ instead of $0.60a_d$). All this proves that the scattering of a cold-atom dimer with an atom or another dimer is essentially controlled by the dimer relative-motion ground state, a physical result not obvious at first.
We in this paper investigate the phase diagram associated with the BCS-BEC crossover of a three-component ultracold superfluid-Fermi-gas of different chemical-potentials and equal masses in two dimensions. The gap order parameter and number densities are found analytically by using the functional path-integral method. The balance of paring will be broken in the free space due to the unequal chemical-potentials. We obtain the same particle number-density and condensed fraction in the BCS superfluid phase as that in a recent paper (Phys. Rev. A 83, 033630), while the Sarma phase of coexistence of normal and superfluid Fermi gases is the characteristics of inhomogeneous system. The minimum ratio of BCS superfluid phase becomes 1/3 in the BCS limit corresponding to the zero-ratio in the two-component system in which the critical point of phase separation is {epsilon}B/{epsilon}F = 2 but becomes 3 in the three-component case.
114 - A. Kievsky , M. Gattobigio 2012
We investigate universal behavior in elastic atom-dimer scattering below the dimer breakup threshold calculating the atom-dimer effective-range function $akcotdelta$. Using the He-He system as a reference, we solve the Schrodinger equation for a fami ly of potentials having different values of the two-body scattering length $a$ and we compare our results to the universal zero-range form deduced by Efimov, $akcotdelta=c_1(ka)+c_2(ka)cot[s_0ln(kappa_*a)+phi(ka)]$, for selected values of the three-body parameter $kappa_*$. Using the parametrization of the universal functions $c_1,c_2,phi$ given in the literature, a good agreement with the universal formula is obtained after introducing a particular type of finite-range corrections. Furthermore, we show that the same parametrization describes a very different system: nucleon-deuteron scattering below the deuteron breakup threshold. Our analysis confirms the universal character of the process, and relates the pole energy in the effective-range function of nucleon-deuteron scattering to the three-body parameter $kappa_*$.
310 - Bo Liu , Xiaopeng Li , Lan Yin 2014
Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temper ature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a rotating external field that generates a direction-dependent two-body effective attraction. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا