ﻻ يوجد ملخص باللغة العربية
Photon exchange due to nuclear bremsstrahlung during nuclear collisions can cause Coulomb excitation in the projectile and the target nuclei. The corresponding process originated in nuclear timescales can also be observed in atomic phenomenon experimentally if it delayed by at least with an attosecond or longer timescales. We have found that this happens due to a mechanism involving the Eisenbud-Wigner-Smith time delay process. We have estimated photoionization time delays in atomic collisions utilizing the nonrelativistic version of random phase approximation with exchange and Hartree-Fock methods. We present three representative processes in which we can observe the phenomena in attosecond timescales even though they originate from excitations in the zeptosecond timescales. Thus the work represents an investigation of parallels between two neighboring areas of physics. Furthermore the present work suggests new possibilities for atomic physics research near the Coulomb barrier energy, where the laser is replaced by nuclear bremsstrahlung.
Variability amplitudes larger than 1 magnitude over time-scales of a few tens of minutes have recently been reported in the optical light-curves of several blazars. In order to independently verify the real occurrence of such extremely violent events
Photoionization is one of the fundamental light-matter interaction processes in which the absorption of a photon launches the escape of an electron. The time scale of the process poses many open questions. Experiments found time delays in the attosec
It has recently been argued that the inability to measure the absolute phase of an electromagnetic field prohibits the representation of a lasers output as a quantum optical coherent state. This argument has generally been considered technically corr
In this work we demonstrate the generation of two intense, ultrafast laser pulses that allow a controlled interferometric measurement of higher harmonic generation pulses with 12.8 attoseconds in resolution (half the atomic unit of time) and a precis
We use R-Matrix with Time-dependence (RMT) theory, with spin-orbit effects included, to study krypton irradiated by two time-delayed XUV ultrashort pulses. The first pulse excites the atom to 4s$^{2}$4p$^{5}$5s. The second pulse then excites 4s4p$^{6