ﻻ يوجد ملخص باللغة العربية
The late-time integrated Sachs-Wolfe (ISW) imprint of $Rgtrsim 100~h^{-1}{rm Mpc}$ super-structures is sourced by evolving large-scale potentials due to a dominant dark energy component in the $Lambda$CDM model. The aspect that makes the ISW effect distinctly interesting is the repeated observation of stronger-than-expected imprints from supervoids at $zlesssim0.9$. Here we analyze the un-probed key redshift range $0.8<z<2.2$ where the ISW signal is expected to fade in $Lambda$CDM, due to a weakening dark energy component, and eventually become consistent with zero in the matter dominated epoch. On the contrary, alternative cosmological models, proposed to explain the excess low-$z$ ISW signals, predicted a sign-change in the ISW effect at $zapprox1.5$ due to the possible growth of large-scale potentials that is absent in the standard model. To discriminate, we estimated the high-$z$ $Lambda$CDM ISW signal using the Millennium XXL mock catalogue, and compared it to our measurements from about 800 supervoids identified in the eBOSS DR16 quasar catalogue. At $0.8<z<1.2$, we found an excess ISW signal with $A_mathrm{ ISW}approx3.6pm2.1$ amplitude. The signal is then consistent with the $Lambda$CDM expectation ($A_mathrm{ ISW}=1$) at $1.2<z<1.5$ where the standard and alternative models predict similar amplitudes. Most interestingly, we also detected an opposite-sign ISW signal at $1.5<z<2.2$ that is in $2.7sigma$ tension with the $Lambda$CDM prediction. Taken at face value, these moderately significant detections of ISW anomalies suggest an alternative growth rate of structure in low-density environments at $sim100~h^{-1}{rm Mpc}$ scales.
The integrated Sachs-Wolfe imprint of extreme structures in the cosmic web probes the dynamical nature of dark energy. Looking through typical cosmic voids, no anomalous signal has been reported. On the contrary, supervoids, associated with large-sca
We present a measurement of the baryon acoustic oscillation (BAO) scale at redshift $z=2.35$ from the three-dimensional correlation of Lyman-$alpha$ (Ly$alpha$) forest absorption and quasars. The study uses 266,590 quasars in the redshift range $1.77
We present constraints on local primordial non-Gaussianity (PNG), parametrized through $f^{rm loc}_{rm NL}$, using the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample. We measure and analyze
The largest structures in the cosmic web probe the dynamical nature of dark energy through their integrated Sachs-Wolfe imprints. In the strength of the signal, typical cosmic voids have shown good consistency with expectation $A_{rm ISW}=Delta T^{rm
We measure the imprint of primordial baryon acoustic oscillations (BAO) in the correlation function of Ly$alpha$ absorption in quasar spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) and the extended BOSS (eBOSS) in Data Release 14 (DR