ترغب بنشر مسار تعليمي؟ اضغط هنا

Conflict-Free Four-Dimensional Path Planning for Urban Air Mobility Considering Airspace Occupations

103   0   0.0 ( 0 )
 نشر من قبل Wei Dai
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Urban air mobility (UAM) has attracted the attention of aircraft manufacturers, air navigation service providers and governments in recent years. Preventing the conflict among urban aircraft is crucial to UAM traffic safety, which is a key in enabling large scale UAM operation. Pre-flight conflict-free path planning can provide a strategic layer in the maintenance of safety performance, thus becomes an important element in UAM. This paper aims at tackling conflict-free path planning problem for UAM operation with a consideration of four-dimensional airspace management. In the first place, we introduced and extended a four-dimensional airspace management concept, AirMatrix. On the basis of AirMatrix, we formulated the shortest flight time path planning problem considering resolution of conflicts with both static and dynamic obstacles. A Conflict-Free A-Star algorithm was developed for planning four-dimensional paths based on first-come-first-served scheme. The algorithm contains a novel design of heuristic function as well as a conflict detection and resolution strategy. Numerical experiment was carried out in Jurong East area in Singapore, and the results show that the algorithm can generate paths resolving a significant number of potential conflicts in airspace utilization, with acceptable computational time and flight delay. The contributions of this study provide references for stakeholders to support the development of UAM.



قيم البحث

اقرأ أيضاً

Collision avoidance is an essential concern for the autonomous operations of aerial vehicles in dynamic and uncertain urban environments. This paper introduces a risk-bounded path planning algorithm for unmanned aerial vehicles (UAVs) operating in su ch environments. This algorithm advances the rapidly-exploring random tree (RRT) with chance constraints to generate probabilistically guaranteed collision-free paths that are robust to vehicle and environmental obstacle uncertainties. Assuming all uncertainties follow Gaussian distributions, the chance constraints are established through converting dynamic and probabilistic constraints into equivalent static and deterministic constraints. By incorporating chance constraints into the RRT algorithm, the proposed algorithm not only inherits the computational advantage of sampling-based algorithms but also guarantees a probabilistically feasible flying zone at every time step. Simulation results show the promising performance of the proposed algorithm.
We present a solution to the problem of fairly planning a fleet of Unmanned Aerial Vehicles (UAVs) that have different missions and operators, such that no one operator unfairly gets to finish its missions early at the expense of others - unless this was explicitly negotiated. When hundreds of UAVs share an urban airspace, the relevant authorities should allocate corridors to them such that they complete their missions, but no one vehicle is accidentally given an exceptionally fast path at the expense of another, which is thus forced to wait and waste energy. Our solution, FairFly, addresses the fair planning question for general autonomous systems, including UAV fleets, subject to complex missions typical of urban applications. FairFly formalizes each mission in temporal logic. An offline search finds the fairest paths that satisfy the missions and can be flown by the UAVs, leading to lighter online control load. It allows explicit negotiation between UAVs to enable imbalanced path durations if desired. We present three fairness notions, including one that reduces energy consumption. We validate our results in simulation, and demonstrate a lighter computational load and less UAV energy consumption as a result of flying fair trajectories.
Effective traffic optimization strategies can improve the performance of transportation networks significantly. Most exiting works develop traffic optimization strategies depending on the local traffic states of congested road segments, where the con gestion propagation is neglected. This paper proposes a novel distributed traffic optimization method for urban freeways considering the potential congested road segments, which are called potential-homogeneous-area. The proposed approach is based on the intuition that the evolution of congestion may affect the neighbor segments due to the mobility of traffic flow. We identify potential-homogeneous-area by applying our proposed temporal-spatial lambda-connectedness method using historical traffic data. Further, global dynamic capacity constraint of this area is integrated with cell transmission model (CTM) in the traffic optimization problem. To reduce computational complexity and improve scalability, we propose a fully distributed algorithm to solve the problem, which is based on the partial augmented Lagrangian and dual-consensus alternating direction method of multipliers (ADMM). By this means, distributed coordination of ramp metering and variable speed limit control is achieved. We prove that the proposed algorithm converges to the optimal solution so long as the traffic optimization objective is convex. The performance of the proposed method is evaluated by macroscopic simulation using real data of Shanghai, China.
With increasing urban population, there is global interest in Urban Air Mobility (UAM), where hundreds of autonomous Unmanned Aircraft Systems (UAS) execute missions in the airspace above cities. Unlike traditional human-in-the-loop air traffic manag ement, UAM requires decentralized autonomous approaches that scale for an order of magnitude higher aircraft densities and are applicable to urban settings. We present Learning-to-Fly (L2F), a decentralized on-demand airborne collision avoidance framework for multiple UAS that allows them to independently plan and safely execute missions with spatial, temporal and reactive objectives expressed using Signal Temporal Logic. We formulate the problem of predictively avoiding collisions between two UAS without violating mission objectives as a Mixed Integer Linear Program (MILP).This however is intractable to solve online. Instead, we develop L2F, a two-stage collision avoidance method that consists of: 1) a learning-based decision-making scheme and 2) a distributed, linear programming-based UAS control algorithm. Through extensive simulations, we show the real-time applicability of our method which is $approx!6000times$ faster than the MILP approach and can resolve $100%$ of collisions when there is ample room to maneuver, and shows graceful degradation in performance otherwise. We also compare L2F to two other methods and demonstrate an implementation on quad-rotor robots.
This paper studies a scalable control method for multi-zone heating, ventilation and air-conditioning (HVAC) systems to optimize the energy cost for maintaining thermal comfort and indoor air quality (IAQ) (represented by CO2) simultaneously. This pr oblem is computationally challenging due to the complex system dynamics, various spatial and temporal couplings as well as multiple control variables to be coordinated. To address the challenges, we propose a two-level distributed method (TLDM) with a upper level and lower level control integrated. The upper level computes zone mass flow rates for maintaining zone thermal comfort with minimal energy cost, and then the lower level strategically regulates zone mass flow rates and the ventilation rate to achieve IAQ while preserving the near energy saving performance of upper level. As both the upper and lower level computation are deployed in a distributed manner, the proposed method is scalable and computationally efficient. The near-optimal performance of the method in energy cost saving is demonstrated through comparison with the centralized method. In addition, the comparisons with the existing distributed method show that our method can provide IAQ with only little increase of energy cost while the latter fails. Moreover, we demonstrate our method outperforms the demand controlled ventilation strategies (DCVs) for IAQ management with about 8-10% energy cost reduction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا