ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Pore Surface Chemistry on the Rotational Dynamics of Nanoconfined Water

164   0   0.0 ( 0 )
 نشر من قبل Denis Morineau
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Benjamin Malfait




اسأل ChatGPT حول البحث

We have investigated the dynamics of water confined in mesostructured porous silicas (SBA-15, MCM-41) and four periodic mesoporous organosilicas (PMOs) by dielectric relaxation spectroscopy. The influence of water-surface interaction has been controlled by the carefully designed surface chemistry of PMOs that involved organic bridges connecting silica moieties with different repetition lengths, hydrophilicity and H-bonding capability. Relaxation processes attributed to the rotational motions of non-freezable water located in the vicinity of the pore surface were studied in the temperature range from 140 K to 225 K. Two distinct situations were achieved depending on the hydration level: at low relative humidity (33% RH), water formed a non-freezable layer adsorbed on the pore surface. At 75% RH, water formed an interfacial liquid layer sandwiched between the pore surface and the ice crystallized in the pore center. In the two cases, the study revealed different water dynamics and different dependence on the surface chemistry. We infer that these findings illustrate the respective importance of water-water and water-surface interactions in determining the dynamics of the interfacial liquid-like water and the adsorbed water molecules, as well as the nature of the different H-bonding sites present on the pore surface.

قيم البحث

اقرأ أيضاً

Hydration or interfacial water present in biomolecules and inorganic solids have been shown to exhibit a dynamical transition upon supercooling. However, an understanding of the extent of the underlying surface hydrophilicity as well as the local dis tribution of hydrophilic/hydrophobic patches on the dynamical transition is unexplored. Here, we use molecular dynamics simulations with a TIP4P/2005 water model to study translational and rotational relaxation dynamics of interfacial water on graphene surfaces. The purpose of this study is to investigate the influence of both surface chemistry as well as the extent of hydration on the rotational transitions of interfacial water on graphene oxide (GO) surfaces in the deeply supercooled region. We have considered three graphene-based surfaces; a GO surface with equal proportions of oxidized and pristine graphene regions in a striped topology, a fully oxidized surface and a pristine graphene surface. The dipole relaxation time of interfacial water shows a strong-to-strong, strong, and a fragile-to-strong transition on these surfaces, respectively, in the temperature range of 210-298 K. In contrast, bulk water shows a fragile-to-strong transition upon supercooling. In all these cases at high hydration, interfacial water co-exists with a thick water film with bulk-like properties. To investigate the influence of bulk water on dynamical transitions, we simulated a low hydration regime where only bound water (surface water) is present on the GO surfaces and found that the rotational relaxation of surface water on both the GO and fully oxidized surfaces show a single Arrhenius behavior. Our results indicate that not only does the local extent of surface hydrophilicity play a role in determining the energy landscape explored by the water molecules upon supercooling, but the presence of bulk water also modulates the dynamic transition.
We investigate the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. An attractive interaction can greatly improve translocation probability. At the same time, it also increases translocation ti me slowly for weak attraction while exponential dependence is observed for strong attraction. For fixed driving force and chain length the histogram of translocation time has a transition from Gaussian distribution to long-tailed distribution with increasing attraction. Under a weak driving force and a strong attractive force, both the translocation time and the residence time in the pore show a non-monotonic behavior as a function of the chain length. Our simulations results are in good agreement with recent experimental data.
When analyzing the broadband absorption spectrum of liquid water (10^10 - 10^13 Hz), we find its relaxation-resonance features to be an indication of Frenkels translation-oscillation motion of particles, which is fundamentally inherent to liquids. We have developed a model of water structure, of which the dynamics is due to diffusion of particles, neutral H2O molecules and H3O+ and OH- ions - with their periodic localizations and mutual transformations. This model establishes for the first time a link between the dc conductivity, the Debye and the high frequency sub-Debye relaxations and the infrared absorption peak at 180 cm-1. The model reveals the characteristic times of the relaxations, 50 ps and 3 ps, as the lifetimes of water molecules and water ions, respectively. The model sheds light on the anomalous mobility of a proton and casts doubt on the long lifetime of a water molecule, 10 hours, commonly associated with autoionization.
Fouling is a major obstacle and challenge in membrane-based separation processes. Caused by the sophisticated interactions between foulant and membrane surface, fouling strongly depends on membrane surface chemistry and morphology. Current studies in the field have been largely focused on polymer membranes. Herein, we report a molecular simulation study for fouling on alumina and graphene membrane surfaces during water treatment. For two foulants (sucralose and bisphenol A), the fouling on alumina surfaces is reduced with increasing surface roughness; however, the fouling on graphene surfaces is enhanced by roughness. It is unravelled that the foulant-surface interaction becomes weaker in the ridge region of a rough alumina surface, thus allowing foulant to leave the surface and reducing fouling. Such behavior is not observed on a rough graphene surface because of the strong foulant-graphene interaction. Moreover, with increasing roughness, the hydrogen bonds formed between water and alumina surfaces are found to increase in number as well as stability. By scaling the atomic charges of alumina, fouling behavior on alumina surfaces is shifted to the one on graphene surfaces. This simulation study reveals that surface chemistry and roughness play a crucial role in membrane fouling, and the microscopic insights are useful for the design of new membranes towards high-performance water treatment.
99 - Fabio Leoni , Carles Calero , 2021
Nanoconfinement can drastically change the behavior of liquids, puzzling us with counterintuitive properties. Moreover, it is relevant in applications, including decontamination and crystallization control. It still lacks a systematic analysis for fl uids with different bulk properties. Here we fill this gap. We compare, by molecular dynamics simulations, three different liquids in a graphene slit pore: (A) A simple fluid, such as argon, described by a Lennard-Jones potential; (B) An anomalous fluid, such as a liquid metal, modeled with an isotropic core-softened potential; (C) Water, the prototypical anomalous liquid, with directional hydrogen bonds. We study how the slit-pore width affects the structure, thermodynamics, and dynamics of the fluids. We check that all the fluids, as expected, show similar oscillating properties by changing the pore size. However, the nature of the free-energy minima for the three fluids is quite different: i) only for the simple liquid all the minima are energy-driven, while their structural order increases with decreasing slit-pore width; ii) only for the isotropic core-softened potential all the minima are entropy-driven, while the energy in the minima increases with decreasing slit-pore width; iii) only the water has a changing nature of the minima: the monolayer minimum is entropy-driven, at variance with the simple liquid, while the bilayer minimum is energy-driven, at variance with the other anomalous liquid. Also, water diffusion has a large increase for sub-nm slit-pores, becoming faster than bulk. Instead, the other two fluids have diffusion oscillations much smaller than water slowing down for decreasing slit-pore width. Our results clarify that nanoconfined water is unique compared to other (simple or anomalous) fluids under similar confinement, and are possibly relevant in nanopores applications, e.g., in water purification from contaminants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا