ﻻ يوجد ملخص باللغة العربية
The measurement of the expansion history of the Universe from the redshift unknown gravitational wave (GW) sources (dark GW sources) detectable from the network of LIGO-Virgo-KAGRA (LVK) detectors depends on the synergy with the galaxy surveys having accurate redshift measurements over a broad redshift range, large sky coverage, and detectability of fainter galaxies. In this work, we explore the possible synergy of the LVK with the spectroscopic galaxy surveys such as DESI and SPHEREx to measure the cosmological parameters which are related to the cosmic expansion history and the GW bias parameters. We show that by using the three-dimensional spatial cross-correlation between the dark GW sources and the spectroscopic galaxy samples, we can measure the value of Hubble constant with about $2%$ and $1.5%$ precision from LVK+DESI and LVK+SPHEREx respectively from the five years of observation with $50%$ duty-cycle for the GW merger rates driven by the star formation history. Similarly, the dark energy equation of state can be measured with about $10%$ and $8%$ precision from LVK+DESI and LVK+SPHEREx respectively. We find that due to the larger sky coverage of SPHEREx than DESI, the performance in constraining the cosmological parameters is better from the former than the latter. By combining Euclid along with DESI, and SPHEREx a marginal gain in the measurability of the cosmological parameters is possible from the sources at high redshift ($zgeq 0.9$).
Line-intensity mapping (LIM) of emission form star-forming galaxies can be used to measure the baryon acoustic oscillation (BAO) scale as far back as the epoch of reionization. This provides a standard cosmic ruler to constrain the expansion rate of
Strong lensing of gravitational waves is more likely for distant sources but predicted event rates are highly uncertain with many astrophysical origins proposed. Here we open a new avenue to estimate the event rate of strongly lensed systems by explo
Assuming that, for a given source of gravitational waves (GWs), we know its sky position, as is the case of GW events with an electromagnetic counterpart such as GW170817, we discuss a null stream method to probe GW polarizations including spin-0 (sc
Gravitational lensing allows the detection of binary black holes (BBH) at cosmological distances with chirp masses that appear to be enhanced by $1+z$ in the range $1<z<4$, in good agreement with the reported BBH masses. We propose this effect also a
We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for