ترغب بنشر مسار تعليمي؟ اضغط هنا

INTPIX4NA -- new integration-type silicon-on-insulator pixel detector for imaging application

216   0   0.0 ( 0 )
 نشر من قبل Ryutaro Nishimura Ph. D
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

INTPIX4NA is an integration-type silicon-on-insulator pixel detector. This detector has a 14.1 x 8.7 mm^2 sensitive area, 425,984 (832 column x 512 row matrix) pixels and the pixel size is 17 x 17 um^2. This detector was developed for residual stress measurement using X-rays (the cos alpha method). The performance of INTPIX4NA was tested with the synchrotron beamlines of the Photon Factory (KEK), and the following results were obtained. The modulation transfer function, the index of the spatial resolution, was more than 50% at the Nyquist frequency (29.4 cycle/mm). The energy resolution analyzed from the collected charge counts is 35.3%--46.2% at 5.415 keV, 21.7%--35.6% at 8 keV, and 15.7%--19.4% at 12 keV. The X-ray signal can be separated from the noise even at a low energy of 5.415 keV at room temperature (approximately 25--27 degree Celsius). The maximum frame rate at which the signal quality can be maintained is 153 fps in the current measurement system. These results satisfy the required performance in the air and at room temperature (approximately 25--27 degree Celsius) condition that is assumed for the environment of the residual stress measurement.

قيم البحث

اقرأ أيضاً

We have developed a prototype time-resolved neutron imaging detector employing the micro-pixel chamber (muPIC), a micro-pattern gaseous detector, coupled with a field programmable gate array-based data acquisition system for applications in neutron r adiography at high-intensity neutron sources. The prototype system, with an active area of 10cm x 10cm and operated at a gas pressure of 2 atm, measures both the energy deposition (via time-over-threshold) and 3-dimensional track of each neutron-induced event, allowing the reconstruction of the neutron interaction point with improved accuracy. Using a simple position reconstruction algorithm, a spatial resolution of 349 +/- 36 microns was achieved, with further improvement expected. The detailed tracking allows strong rejection of background gamma-rays, resulting in an effective gamma sensitivity of 10^-12 or less, coupled with stable, robust neutron identification. The detector also features a time resolution of 0.6 microseconds.
115 - Ye Ding , Zhenjie Li , Wei Wei 2020
The calibration process for the hybrid array pixel detector designed for High Energy Photon Source in China, we called HEPS-BPIX, is presented in this paper. Based on the threshold scanning, the relationship between energy and threshold is quantified for the threshold calibration. For the threshold trimming, the precise algorithm basing on LDAC characteristic and fast algorithm basing on LDAC scanning are proposed in this paper to study the performance of the threshold DACs which will be applied to the pixel. The threshold dispersion has been reduced from 46.28 mV without algorithm to 6.78 mV with the precise algorithm, whereas it is 7.61 mV with fast algorithm. For the temperature from 5 to 60 , the threshold dispersion of precise algorithm varies in the range of about 5.69 mV, whereas it is about 33.21 mV with the fast algorithm which can be re-corrected to 1.49 mV. The measurement results show that the fast algorithm could get the applicable threshold dispersion for a silicon pixel module and take a shorter time, while the precise algorithm could get better threshold dispersion, but time consuming. The temperature dependence of the silicon pixel module noise is also studied to assess the detector working status. The minimum detection energy can be reduced about 0.83 keV at a 20 lower temperature.
We have developed a prototype time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber ({mu}PIC) coupled with a field-programmable-gate-array-based data acquisition system. Our detector system combines 100{mu}m-level spatial and sub-{mu}s time resolutions with a low gamma sensitivity of less than 10^-12 and high data rates, making it well suited for applications in neutron radiography at high-intensity, pulsed neutron sources. In the present paper, we introduce the detector system and present several test measurements performed at NOBORU (BL10), J-PARC to demonstrate the capabilities of our prototype. We also discuss future improvements to the spatial resolution and rate performance.
The tracking system of the CMS experiment, currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland), will include a silicon pixel detector providing three spacial measurements in its final configuration for tracks produced in high energy pp collisions. In this paper we present the results of test beam measurements performed at CERN on irradiated silicon pixel sensors. Lorentz angle and charge collection efficiency were measured for two sensor designs and at various bias voltages.
The CMS experiment at the LHC includes a hybrid silicon pixel detector for the reconstruction of charged tracks and of the interaction vertices. The barrel region consists of n-in-n sensors with 100X150 um^2 cell size processed on diffusion oxygenate d float zone silicon. A biasing grid is implemented and pixel isolation is achieved with the moderated p-spray technique. An extensive test program was carried out on the H2 beam line of the CERN SPS. In this paper we describe the sensor layout, the beam test setup and the results obtained with both irradiated and non-irradiated prototype devices. Measurements of charge collection, hit detection efficiency, Lorentz angle and spatial resolution are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا