ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests of silicon sensors for the CMS pixel detector

75   0   0.0 ( 0 )
 نشر من قبل Andrei Dorokhov
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The tracking system of the CMS experiment, currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland), will include a silicon pixel detector providing three spacial measurements in its final configuration for tracks produced in high energy pp collisions. In this paper we present the results of test beam measurements performed at CERN on irradiated silicon pixel sensors. Lorentz angle and charge collection efficiency were measured for two sensor designs and at various bias voltages.



قيم البحث

اقرأ أيضاً

The CMS experiment at the LHC includes a hybrid silicon pixel detector for the reconstruction of charged tracks and of the interaction vertices. The barrel region consists of n-in-n sensors with 100X150 um^2 cell size processed on diffusion oxygenate d float zone silicon. A biasing grid is implemented and pixel isolation is achieved with the moderated p-spray technique. An extensive test program was carried out on the H2 beam line of the CERN SPS. In this paper we describe the sensor layout, the beam test setup and the results obtained with both irradiated and non-irradiated prototype devices. Measurements of charge collection, hit detection efficiency, Lorentz angle and spatial resolution are presented.
105 - M. Bubna , E. Alagoz , A. Krzywda 2014
The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminos ity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.
120 - J. Weingarten 2012
Results of beam tests with planar silicon pixel sensors aimed towards the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include spatial resolution, charge collection performance and charge sharing betw een neighbouring cells as a function of track incidence angle for different bulk materials. Measurements of n-in-n pixel sensors are presented as a function of fluence for different irradiations. Furthermore p-type silicon sensors from several vendors with slightly differing layouts were tested. All tested sensors were connected by bump-bonding to the ATLAS Pixel read-out chip. We show that both n-type and p-type tested planar sensors are able to collect significant charge even after integrated fluences expected at HL-LHC.
138 - Vincenzo Chiochia 2007
The CMS experiment at the LHC includes a hybrid silicon pixel detector for the reconstruction of charged tracks and of the interaction vertices. The detector is made of three barrel layers and two disks at each end of the barrel. Detector modules con sist of thin, segmented silicon sensors with highly integrated readout chips connected by the bump bonding technique. In this paper we report on the progress of the detector construction and testing. In addition, first results from the commissioning systems at CERN and PSI are presented.
143 - V.Chiochia , E.Alagoz , M.Swartz 2006
In this paper a detailed simulation of irradiated pixel sensors was used to investigate the effects of radiation damage on charge sharing and position determination. The simulation implements a model of radiation damage by including two defect levels with opposite charge states and trapping of charge carriers. We show that charge sharing functions extracted from the simulation can be parameterized as a function of the inter-pixel position and used to improve the position determination. For sensors irradiated to Phi=5.9x10^14 n/cm^2 a position resolution below 15 um can be achieved after calibration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا