ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Estimate RIS-Aided mmWave Channels

100   0   0.0 ( 0 )
 نشر من قبل Jiguang He
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by the remarkable learning and prediction performance of deep neural networks (DNNs), we apply one special type of DNN framework, known as model-driven deep unfolding neural network, to reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) single-input multiple-output (SIMO) systems. We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations. To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method. It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.



قيم البحث

اقرأ أيضاً

A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links conne cting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.
Location information offered by external positioning systems, e.g., satellite navigation, can be used as prior information in the process of beam alignment and channel parameter estimation for reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) multiple-input multiple-output networks. Benefiting from the availability of such prior information, albeit imperfect, the beam alignment and channel parameter estimation processes can be significantly accelerated with less candidate beams explored at all the terminals. We propose a practical channel parameter estimation method via atomic norm minimization, which outperforms the standard beam alignment in terms of both the mean square error and the effective spectrum efficiency for the same training overhead.
The concept of reconfigurable intelligent surface (RIS) has been proposed to change the propagation of electromagnetic waves, e.g., reflection, diffraction, and refraction. To accomplish this goal, the phase values of the discrete RIS units need to b e optimized. In this paper, we consider RIS-aided millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems for both accurate positioning and high data-rate transmission. We propose an adaptive phase shifter design based on hierarchical codebooks and feedback from the mobile station (MS). The benefit of the scheme lies in that the RIS does not require deployment of any active sensors and baseband processing units. During the update process of phase shifters, the combining vector at the MS is also sequentially refined. Simulation results show the performance improvement of the proposed algorithm over the random design scheme, in terms of both positioning accuracy and data rate. Moreover, the performance converges to exhaustive search scheme even in the low signal-to-noise ratio regime.
A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snells reflection law. However, the optimal co ntrol of the RIS requires perfect channel state information (CSI) of the individual channels that link the base station (BS) and the mobile station (MS) to each other via the RIS. Thereby super-resolution channel (parameter) estimation needs to be efficiently conducted at the BS or MS with CSI feedback to the RIS controller. In this paper, we adopt a two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and products of propagation path gains. We evaluate the mean square error of the parameter estimates, the RIS gains, the average effective spectrum efficiency bound, and average squared distance between the designed beamforming and combining vectors and the optimal ones. The results demonstrate that the proposed scheme achieves super-resolution estimation compared to the existing benchmark schemes, thus offering promising performance in the subsequent data transmission phase.
79 - Sifan Liu , Pengfei Ni , Rang Liu 2021
Reconfigurable intelligent surface (RIS) has been regarded as a revolutionary and promising technology owing to its powerful feature of adaptively shaping wireless propagation environment. However, as a frequency-selective device, the RIS can only ef fectively provide tunable phase-shifts for signals within a certain frequency band. Thus, base-station (BS)-RIS-user association is an important issue to maximize the efficiency and ability of the RIS in cellular networks. In this paper, we consider a RIS-aided cellular network and aim to maximize the sum-rate of downlink transmissions by designing BS-RIS-user association as well as the active and passive beamforming of BSs and RIS, respectively. A dynamically successive access algorithm is developed to design the user association. During the dynamical access process, an iterative algorithm is proposed to alternatively obtain the active and passive beamforming. Finally, the optimal BS-RIS association is obtained by an exhaustive search method. Simulation results illustrate the significant performance improvement of the proposed BS-RIS-user association and beamforming design algorithm.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا