ﻻ يوجد ملخص باللغة العربية
Brain-machine interfaces (BMIs) help the disabled restore body functions by translating neural activity into digital commands to control external devices. Neural adaptation, where the brain signals change in response to external stimuli or movements, plays an important role in BMIs. When subjects purely use neural activity to brain-control a prosthesis, some neurons will actively explore a new tuning property to accomplish the movement task. The prediction of this neural tuning property can help subjects adapt more efficiently to brain control and maintain good decoding performance. Existing prediction methods track the slow change of the tuning property in the manual control, which is not suitable for the fast neural adaptation in brain control. In order to identify the active neurons in brain control and track their tuning property changes, we propose a globally adaptive point process method (GaPP) to estimate the neural modulation state from spike trains, decompose the states into the hyper preferred direction and reconstruct the kinematics in a dual-model framework. We implement the method on real data from rats performing a two-lever discrimination task under manual control and brain control. The results show our method successfully predicts the neural modulation state and identifies the neurons that become active in brain control. Compared to existing methods, ours tracks the fast changes of the hyper preferred direction from manual control to brain control more accurately and efficiently and reconstructs the kinematics better and faster.
Brain-computer interface (BCI) systems have potential as assistive technologies for individuals with severe motor impairments. Nevertheless, individuals must first participate in many training sessions to obtain adequate data for optimizing the class
Brain-computer interfaces (BCIs) can provide an alternative means of communication for individuals with severe neuromuscular limitations. The P300-based BCI speller relies on eliciting and detecting transient event-related potentials (ERPs) in electr
Convolutional Neural Networks (CNN) outperform traditional classification methods in many domains. Recently these methods have gained attention in neuroscience and particularly in brain-computer interface (BCI) community. Here, we introduce a CNN opt
Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories.
We describe the experimental procedures for a dataset that we have made publicly available at https://doi.org/10.5281/zenodo.1494163 in mat and csv formats. This dataset contains electroencephalographic (EEG) recordings of 24 subjects doing a visual