ترغب بنشر مسار تعليمي؟ اضغط هنا

3-micron Reflectance Spectroscopy of Carbonaceous Chondrites under Asteroid-like Conditions

97   0   0.0 ( 0 )
 نشر من قبل Driss Takir
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured 3-micron reflectance spectra of 21 meteorites that represent all carbonaceous chondrite types available in terrestrial meteorite collections. The measurements were conducted at the Laboratory for Spectroscopy under Planetary Environmental Conditions (LabSPEC) at the Johns Hopkins University Applied Physics Laboratory (JHU APL) under vacuum and thermally-desiccated conditions (asteroid-like conditions). This is the most comprehensive 3-micron dataset of carbonaceous chondrites ever acquired in environments similar to the ones experienced by asteroids. The 3-micron reflectance spectra are extremely important for direct comparisons with and appropriate interpretations of reflectance data from ground-based telescopic and spacecraft observations of asteroids. We found good agreement between 3-{mu}m spectral characteristics of carbonaceous chondrites and carbonaceous chondrite classifications. The 3-{mu}m band is diverse, indicative of varying composition, thus suggesting that these carbonaceous chondrites experienced distinct parent body aqueous alteration and metamorphism environments.



قيم البحث

اقرأ أيضاً

A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mi ssion in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near-infrared (0.3 to 2.2 {mu}m) and in the mid-infrared to thermal infrared (2.5 to 30.0 {mu}m or 4000 to ~333 cm^-1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal-rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high-albedo asteroids.
Carbonaceous chondrite meteorites are so far the only available samples representing carbon-rich asteroids and in order to allow future comparison with samples returned by missions such as Hayabusa 2 and OSIRIS-Rex, is important to understand their p hysical properties. Future characterization of asteroid primitive classes, some of them targeted by sample-return missions, requires a better understanding of their mineralogy, the consequences of the exposure to space weathering, and how both affect the reflectance behavior of these objects. In this paper, the reflectance spectra of two chemically-related carbonaceous chondrites groups, precisely the Vigrano (CVs) and Karoonda (CKs), are measured and compared. The available sample suite includes polished sections exhibiting different petrologic types: from 3 (very low degree of thermal metamorphism) to 5 (high degree of thermal metamorphism). We found that the reflective properties and the comparison with the Cg asteroid reflectance class point toward a common chondritic reservoir from which the CV-CK asteroids collisionally evolved. In that scenario the CV and CK chondrites could be originated from 221 Eos asteroid family, but because of its collisional disruption, both chondrite groups evolved separately, experiencing different stages of thermal metamorphism, annealing and space weathering.
We report microscopic, cathodoluminescence, chemical and O isotopic measurements of FeO-poor isolated olivine grains (IOG) in the carbonaceous chondrites Allende (CV3), Northwest Africa 5958 (C2-ung), Northwest Africa 11086 (CM2-an), Allan Hills 7730 7 (CO3.0). The general petrographic, chemical and isotopic similarity with bona fide type I chondrules confirms that the IOG derived from them. The concentric CL zoning, reflecting a decrease in refractory elements toward the margins, and frequent rimming by enstatite are taken as evidence of interaction of the IOG with the gas as stand-alone objects. This indicates that they were splashed out of chondrules when these were still partially molten. CaO-rich refractory forsterites, which are restricted to $Delta^{17}O < -4permil$ likely escaped equilibration at lower temperatures because of their large size and possibly quicker quenching. The IOG thus bear witness to frequent collisions in the chondrule-forming regions.
The valence of iron has been used in terrestrial studies to trace the hydrolysis of primary silicate rocks. Here, we use a similar approach to characterize the secondary processes, namely thermal metamorphism and aqueous alteration, that have affecte d carbonaceous chondrites. X-ray absorption near-edge structure spectroscopy at the Fe-K- edge was performed on a series of 36 CM, 9 CR, 10 CV, and 2 CI chondrites. Among the four carbonaceous chondrites groups studied, a correlation between the iron oxidation index (IOI = [2 ((Fe2+) + 3(Fe3+))/FeTOT) and the hydrogen content is observed. However, within the CM group, for which a progressive alteration sequence has been defined, a conversion of Fe3+ to Fe2+ is observed with increasing degree of aqueous alteration. This reduction of iron can be explained by an evolution in the mineralogy of the secondary phases. In the case of the few CM chondrites that experienced some thermal metamorphism, in addition to aqueous alteration, a redox memory of the aqueous alteration is present: a significant fraction of 3+ 2+ 0 Fe is present, together with Fe and sometimes Fe. From our data set, the CR chondrites show a wider range of IOI from 1.5 to 2.5. In all considered CR chondrites, the three oxidation states of iron coexist. Even in the least-altered CR chondrites, the fraction of Fe3+ can be high (30% for MET 00426). This observation confirms that oxidized iron has been integrated during formation of fine-grained amorphous material in the matrix. Last, the IOI of CV chondrites does not reflect the reduced/oxidized classification based on metal and magnetite proportions, but is strongly correlated with petrographic types. The valence of iron in CV chondrites therefore appears to be most closely related to thermal history, rather than aqueous alteration, even if these processes can occur together .
Aims. The existence of asteroid complexes produced by the disruption of these comets suggests that evolved comets could also produce high-strength materials able to survive as meteorites. We chose as an example comet 2P/Encke, one of the largest obje ct of the so-called Taurid complex. We compare the reflectance spectrum of this comet with the laboratory spectra of some Antarctic ungrouped carbonaceous chondrites to investigate whether some of these meteorites could be associated with evolved comets. Methods. We compared the spectral behaviour of 2P/Encke with laboratory spectra of carbonaceous chondrites. Different specimens of the common carbonaceous chondrite groups do not match the overall features and slope of comet 2P/Encke. Trying anomalous carbonaceous chondrites, we found two meteorites, Meteorite Hills 01017 and Grosvenor Mountains 95551, which could be good proxies for the dark materials forming this short-period comet. We hypothesise that these two meteorites could be rare surviving samples, either from the Taurid complex or another compositionally similar body. In any case, it is difficult to get rid of the effects of terrestrial weathering in these Antarctic finds, and further studies are needed. Future sample return from the so-called dormant comets could be also useful to establish a ground truth on the materials forming evolved short-period comets. Results. As a natural outcome, we think that identifying good proxies of 2P/Encke-forming materials might have interesting implications for future sample-return missions to evolved, potentially dormant or extinct comets. To understand the compositional nature of evolved comets is particularly relevant in the context of the future mitigation of impact hazard from these dark and dangerous projectiles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا