ﻻ يوجد ملخص باللغة العربية
We measured 3-micron reflectance spectra of 21 meteorites that represent all carbonaceous chondrite types available in terrestrial meteorite collections. The measurements were conducted at the Laboratory for Spectroscopy under Planetary Environmental Conditions (LabSPEC) at the Johns Hopkins University Applied Physics Laboratory (JHU APL) under vacuum and thermally-desiccated conditions (asteroid-like conditions). This is the most comprehensive 3-micron dataset of carbonaceous chondrites ever acquired in environments similar to the ones experienced by asteroids. The 3-micron reflectance spectra are extremely important for direct comparisons with and appropriate interpretations of reflectance data from ground-based telescopic and spacecraft observations of asteroids. We found good agreement between 3-{mu}m spectral characteristics of carbonaceous chondrites and carbonaceous chondrite classifications. The 3-{mu}m band is diverse, indicative of varying composition, thus suggesting that these carbonaceous chondrites experienced distinct parent body aqueous alteration and metamorphism environments.
A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mi
Carbonaceous chondrite meteorites are so far the only available samples representing carbon-rich asteroids and in order to allow future comparison with samples returned by missions such as Hayabusa 2 and OSIRIS-Rex, is important to understand their p
We report microscopic, cathodoluminescence, chemical and O isotopic measurements of FeO-poor isolated olivine grains (IOG) in the carbonaceous chondrites Allende (CV3), Northwest Africa 5958 (C2-ung), Northwest Africa 11086 (CM2-an), Allan Hills 7730
The valence of iron has been used in terrestrial studies to trace the hydrolysis of primary silicate rocks. Here, we use a similar approach to characterize the secondary processes, namely thermal metamorphism and aqueous alteration, that have affecte
Aims. The existence of asteroid complexes produced by the disruption of these comets suggests that evolved comets could also produce high-strength materials able to survive as meteorites. We chose as an example comet 2P/Encke, one of the largest obje