ﻻ يوجد ملخص باللغة العربية
We present sharp conditions on divergence-free drifts in Lebesgue spaces for the passive scalar advection-diffusion equation [ partial_t theta - Delta theta + b cdot abla theta = 0 ] to satisfy local boundedness, a single-scale Harnack inequality, and upper bounds on fundamental solutions. We demonstrate these properties for drifts $b$ belonging to $L^q_t L^p_x$, where $frac{2}{q} + frac{n}{p} < 2$, or $L^p_x L^q_t$, where $frac{3}{q} + frac{n-1}{p} < 2$. For steady drifts, the condition reduces to $b in L^{frac{n-1}{2}+}$. The space $L^1_t L^infty_x$ of drifts with `bounded total speed is a borderline case and plays a special role in the theory. To demonstrate sharpness, we construct counterexamples whose goal is to transport anomalous singularities into the domain `before they can be dissipated.
For any $hin(1,2]$, we give an explicit construction of a compactly supported, uniformly continuous, and (weakly) divergence-free velocity field in $mathbb{R}^2$ that weakly advects a measure whose support is initially the origin but for positive tim
We prove that a probability solution of the stationary Kolmogorov equation generated by a first order perturbation $v$ of the Ornstein--Uhlenbeck operator $L$ possesses a highly integrable density with respect to the Gaussian measure satisfying the n
The class of Divergence-free symmetric tensors is ubiquitous in Continuum Mechanics. We show its invariance under projective transformations of the independent variables. This action, which preserves the positiveness, extends Sophus Lies group analys
In this paper, we obtain some regularities of the free boundary in optimal transportation with the quadratic cost. Our first result is about the $C^{1,alpha}$ regularity of the free boundary for optimal partial transport between convex domains for de
In this paper, we consider the pointwise boundary Lipschitz regularity of solutions for the semilinear elliptic equations in divergence form mainly under some weaker assumptions on nonhomogeneous term and the boundary. If the domain satisfies C^{1,te