ﻻ يوجد ملخص باللغة العربية
We use the isometric embedding of the spatial horizon of fast rotating Kerr black hole in a hyperbolic space to compute the quasi-local mass of the horizon for any value of the spin parameter $j=J/m^2$. The mass is monotonically decreasing from twice the ADM mass at $j=0$ to $1.76569m$ at $j=sqrt{3}/2$. It then monotonicaly increases to a maximum around $j=0.99907$, and finally decreases to $2.01966m$ for $j=1$ which corresponds to the extreme Kerr black hole.
The no-hair theorem can be tested in the strong gravity regime by using the top-bottom approach and the bottom-top approach. The non-Kerr spacetime of the later approach is an ideal framework to do the tests in the region very close to the black hole
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established
In this paper we study the fermion quasi-normal modes of a 4-dimensional rotating black-hole using the WKB(J) (to third and sixth order) and the AIM semi-analytic methods in the massless Dirac fermion sector. These semi-analytic approximations are co
The extendibility of spacetime and the existence of weak solutions to the Einstein field equations beyond Cauchy horizons, is a crucial ingredient to examine the limits of General Relativity. Strong Cosmic Censorship serves as a firewall for gravitat
An atom falling freely into a Kerr black hole in a Boulware-like vacuum is shown to emit radiation with a Planck spectrum at the Hawking temperature. For a cloud of falling atoms with random initial times, the radiation is thermal. The existence of t