ترغب بنشر مسار تعليمي؟ اضغط هنا

A prismatic approach to $(varphi, hat G)$-modules and $F$-crystals

140   0   0.0 ( 0 )
 نشر من قبل Heng Du
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a new construction of $(varphi, hat G)$-modules using the theory of prisms developed by Bhatt and Scholze. As an application, we give a different proof about the equivalence between the category of prismatic $F$-crystals in finite locally free $mathcal{O}_{Delta}$-modules over $mathrm{Spf}(mathcal{O}_K)$ and the category of lattices in crystalline representations of $G_K$, where $K$ is a complete discretely valued field of mixed characteristic with perfect residue field. We also propose a possible generalization of this result for semi-stable representations using the absolute logarithmic prismatic site.



قيم البحث

اقرأ أيضاً

75 - Zhiyou Wu 2021
We prove that both local Galois representations and $(varphi,Gamma)$-modules can be recovered from prismatic F-crystals, from which we obtain a new proof of the equivalence of Galois representations and $(varphi,Gamma)$-modules.
Let $F$ be a finite extension of $mathbb{Q}_p$. We determine the Lubin-Tate $(varphi,Gamma)$-modules associated to the absolutely irreducible mod $p$ representations of the absolute Galois group ${rm Gal}(bar{F}/F)$.
124 - Adrian Vasiu 2003
Let $k$ be an algebraically closed field of positive characteristic $p$. We first classify the $D$-truncations mod $p$ of Shimura $F$-crystals over $k$ and then we study stratifications defined by inner isomorphism classes of these $D$-truncations. T his generalizes previous works of Kraft, Ekedahl, Oort, Moonen, and Wedhorn. As a main tool we introduce and study Bruhat $F$-decompositions; they generalize the combined form of Steinberg theorem and of classical Bruhat decompositions for reductive groups over $k$.
153 - Yichao Tian 2021
Let $(A, I)$ be a bounded prism, and $X$ be a smooth $p$-adic formal scheme over $Spf(A/I)$. We consider the notion of crystals on Bhatt--Scholzes prismatic site $(X/A)_{prism}$ of $X$ relative to $A$. We prove that if $X$ is proper over $Spf(A/I)$ o f relative dimension $n$, then the cohomology of a prismatic crystal is a perfect complex of $A$-modules with tor-amplitude in degrees $[0,2n]$. We also establish a Poincare duality for the reduced prismatic crystals, i.e. the crystals over the reduced structural sheaf of $(X/A)_{prism}$. The key ingredient is an explicit local description of reduced prismatic crystals in terms of Higgs modules.
By work of Belyi, the absolute Galois group $G_{mathbb{Q}}=mathrm{Gal}(overline{mathbb{Q}}/mathbb{Q})$ of the field $mathbb{Q}$ of rational numbers can be embedded into $A=mathrm{Aut}(widehat{F_2})$, the automorphism group of the free profinite group $widehat{F_2}$ on two generators. The image of $G_{mathbb{Q}}$ lies inside $widehat{GT}$, the Grothendieck-Teichmuller group. While it is known that every abelian representation of $G_{mathbb{Q}}$ can be extended to $widehat{GT}$, Lochak and Schneps put forward the challenge of constructing irreducible non-abelian representations of $widehat{GT}$. We do this virtually, namely by showing that a rich class of arithmetically defined representations of $G_{mathbb{Q}}$ can be extended to finite index subgroups of $widehat{GT}$. This is achieved, in fact, by extending these representations all the way to finite index subgroups of $A=mathrm{Aut}(widehat{F_2})$. We do this by developing a profinite version of the work of Grunewald and Lubotzky, which provided a rich collection of representations for the discrete group $mathrm{Aut}(F_d)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا