ﻻ يوجد ملخص باللغة العربية
Let $(A, I)$ be a bounded prism, and $X$ be a smooth $p$-adic formal scheme over $Spf(A/I)$. We consider the notion of crystals on Bhatt--Scholzes prismatic site $(X/A)_{prism}$ of $X$ relative to $A$. We prove that if $X$ is proper over $Spf(A/I)$ of relative dimension $n$, then the cohomology of a prismatic crystal is a perfect complex of $A$-modules with tor-amplitude in degrees $[0,2n]$. We also establish a Poincare duality for the reduced prismatic crystals, i.e. the crystals over the reduced structural sheaf of $(X/A)_{prism}$. The key ingredient is an explicit local description of reduced prismatic crystals in terms of Higgs modules.
We prove that the $0$-th local cohomology of the jacobian ring of a projective hypersurface with isolated singularities has a nice interpretation it in the context of linkage theory. Roughly speaking, it represents a measure of the failure of Gherard
We define, for each quasi-syntomic ring $R$ (in the sense of Bhatt-Morrow-Scholze), a category $mathrm{DF}(R)$ of textit{filtered prismatic Dieudonne crystals over $R$} and a natural functor from $p$-divisible groups over $R$ to $mathrm{DF}(R)$. We p
This paper is a survey of finiteness results in hyperkahler geometry. We review some classical theorems by Sullivan, Kollar-Matsusaka, Huybrechts, as well as theorems in the recent literature by Charles, Sawon, and joint results of the author with Ve
We prove that both local Galois representations and $(varphi,Gamma)$-modules can be recovered from prismatic F-crystals, from which we obtain a new proof of the equivalence of Galois representations and $(varphi,Gamma)$-modules.
Let fa be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. We explore the behavior of the two notions f_{fa}(M), the finiteness dimension of M with respect to fa, and, its dual notion q_{fa}(M), the Artinianess dimensi