ﻻ يوجد ملخص باللغة العربية
We provide an analytical proof of universality for bound states in one-dimensional systems of two and three particles, valid for short-range interactions with negative or vanishing integral over space. The proof is performed in the limit of weak pair-interactions and covers both binding energies and wave functions. Moreover, in this limit the results are formally shown to converge to the respective ones found in the case of the zero-range contact interaction.
We study a heavy-heavy-light three-body system confined to one space dimension. Both binding energies and corresponding wave functions are obtained for (i) the zero-range, and (ii) two finite-range attractive heavy-light interaction potentials. In ca
We study a heavy-heavy-light three-body system confined to one space dimension provided the binding energy of an excited state in the heavy-light subsystems approaches zero. The associated two-body system is characterized by (i) the structure of the
Many synthetic quantum systems allow particles to have dispersion relations that are neither linear nor quadratic functions. Here, we explore single-particle scattering in one dimension when the dispersion relation is $epsilon(k)=pm |d|k^m$, where $m
We investigate the formation of trimers in an infinite one-dimensional lattice model of hard-core particles with single-particle hopping $t$ and and nearest-neighbour two-body $U$ and three-body $V$ interactions of relevance to Rydberg atoms and pola
We propose an entropic measure of non-classical correlations in general mixed states of fermion systems, based on the loss of information due to the unread measurement of the occupancy of single particle states of a given basis. When minimized over a