ﻻ يوجد ملخص باللغة العربية
We study a heavy-heavy-light three-body system confined to one space dimension. Both binding energies and corresponding wave functions are obtained for (i) the zero-range, and (ii) two finite-range attractive heavy-light interaction potentials. In case of the zero-range potential, we apply the method of Skorniakov and Ter-Martirosian to explore the accuracy of the Born-Oppenheimer approach. For the finite-range potentials, we solve the Schrodinger equation numerically using a pseudospectral method. We demonstrate that when the two-body ground state energy approaches zero, the three-body bound states display a universal behavior, independent of the shape of the interaction potential.
We study a heavy-heavy-light three-body system confined to one space dimension provided the binding energy of an excited state in the heavy-light subsystems approaches zero. The associated two-body system is characterized by (i) the structure of the
We provide an analytical proof of universality for bound states in one-dimensional systems of two and three particles, valid for short-range interactions with negative or vanishing integral over space. The proof is performed in the limit of weak pair
Many synthetic quantum systems allow particles to have dispersion relations that are neither linear nor quadratic functions. Here, we explore single-particle scattering in one dimension when the dispersion relation is $epsilon(k)=pm |d|k^m$, where $m
We study a simple one-dimensional quantum system on a circle with n scale free point interactions. The spectrum of this system is discrete and expressible as a solution of an explicit secular equation. However, its statistical properties are nontrivi
We investigate the formation of trimers in an infinite one-dimensional lattice model of hard-core particles with single-particle hopping $t$ and and nearest-neighbour two-body $U$ and three-body $V$ interactions of relevance to Rydberg atoms and pola