ﻻ يوجد ملخص باللغة العربية
We study the entanglement entropy of blocks of contiguous spins in non-periodic (quasi-periodic or more generally aperiodic) critical Heisenberg, XX and quantum Ising spin chains, e.g. in Fibonacci chains. For marginal and relevant aperiodic modulations, the entanglement entropy is found to be a logarithmic function of the block size with log-periodic oscillations. The effective central charge, c_eff, defined through the constant in front of the logarithm may depend on the ratio of couplings and can even exceed the corresponding value in the homogeneous system. In the strong modulation limit, the ground state is constructed by a renormalization group method and the limiting value of c_eff is exactly calculated. Keeping the ratio of the block size and the system size constant, the entanglement entropy exhibits a scaling property, however, the corresponding scaling function may be nonanalytic.
We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the
Using strong-disorder renormalization group, numerical exact diagonalization, and quantum Monte Carlo methods, we revisit the random antiferromagnetic XXZ spin-1/2 chain focusing on the long-length and ground-state behavior of the average time-indepe
We study a quantum spin-1/2 chain that is dual to the canonical problem of non-equilibrium Kawasaki dynamics of a classical Ising chain coupled to a thermal bath. The Hamiltonian is obtained for the general disordered case with non-uniform Ising coup
The quantum entanglement $E$ of a bipartite quantum Ising chain is compared with the mutual information $I$ between the two parts after a local measurement of the classical spin configuration. As the model is conformally invariant, the entanglement m
This work considers entropy generation and relaxation in quantum quenches in the Ising and $3$-state Potts spin chains. In the absence of explicit symmetry breaking we find universal ratios involving Renyi entropy growth rates and magnetisation relax