ﻻ يوجد ملخص باللغة العربية
We study the spin-mixing dynamics of a one-dimensional strongly repulsive Fermi gas under harmonic confinement. By employing a mapping onto an inhomogeneous isotropic Heisenberg model and the symmetries under particle exchange, we follow the dynamics till very long times. Starting from an initial spin-separated state, we observe superdiffusion, spin-dipolar large amplitude oscillations and thermalization. We report a universal scaling of the oscillations with particle number N^1/4, implying a slow-down of the motion and the decrease of the zero-temperature spin drag coefficient as the particle number grows.
Transport of strongly interacting fermions governs modern materials -- from the high-$T_c$ cuprates to bilayer graphene --, but also nuclear fission, the merging of neutron stars and the expansion of the early universe. Here we observe a universal qu
Many-body fermion systems are important in many branches of physics, including condensed matter, nuclear, and now cold atom physics. In many cases, the interactions between fermions can be approximated by a contact interaction. A recent theoretical a
We show that short-range pair correlations in a strongly interacting Fermi gas follow a simple universal law described by Tans relations. This is achieved through measurements of the static structure factor which displays a universal scaling proporti
We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin up and spin down atomic clouds in a trap using spin-dependent temperature gradients. We
We present an experimental investigation of the dynamic spin response of a strongly interacting Fermi gas using Bragg spectroscopy. By varying the detuning of the Bragg lasers, we show that it is possible to measure the response in the spin and densi