ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic spin response of a strongly interacting Fermi gas

442   0   0.0 ( 0 )
 نشر من قبل Chris Vale
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an experimental investigation of the dynamic spin response of a strongly interacting Fermi gas using Bragg spectroscopy. By varying the detuning of the Bragg lasers, we show that it is possible to measure the response in the spin and density channels separately. At low Bragg energies, the spin response is suppressed due to pairing, whereas the density response is enhanced. These experiments provide the first independent measurements of the spin-parallel and spin-antiparallel dynamic and static structure factors and open the way to a complete study of the structure factors at any momentum. At high momentum the spin-antiparallel dynamic structure factor displays a universal high frequency tail, proportional to $omega^{-5/2}$, where $hbar omega$ is the probe energy.



قيم البحث

اقرأ أيضاً

We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin up and spin down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related spin-heat transport coefficients as functions of temperature and interaction strength. We find that when the inter-spin scattering length becomes larger than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a function of temperature, and hence so does the direction of the spin-separation. We compute this zero-crossing temperature as a function of interaction strength and in particular in the unitary limit for the inter-spin scattering.
We realize a two-component dipolar Fermi gas with tunable interactions, using erbium atoms. Employing a lattice-protection technique, we selectively prepare deeply degenerate mixtures of the two lowest spin states and perform high-resolution Feshbach spectroscopy in an optical dipole trap. We identify a comparatively broad Feshbach resonance and map the interspin scattering length in its vicinity. The Fermi mixture shows a remarkable collisional stability in the strongly interacting regime, providing a first step towards studies of superfluid pairing, crossing from Cooper pairs to bound molecules, in presence of dipole-dipole interactions.
Transport of strongly interacting fermions governs modern materials -- from the high-$T_c$ cuprates to bilayer graphene --, but also nuclear fission, the merging of neutron stars and the expansion of the early universe. Here we observe a universal qu antum limit of diffusivity in a homogeneous, strongly interacting Fermi gas of atoms by studying sound propagation and its attenuation via the coupled transport of momentum and heat. In the normal state, the sound diffusivity ${D}$ monotonically decreases upon lowering the temperature $T$, in contrast to the diverging behavior of weakly interacting Fermi liquids. As the superfluid transition temperature is crossed, ${D}$ attains a universal value set by the ratio of Plancks constant ${h}$ and the particle mass ${m}$. This finding of quantum limited sound diffusivity informs theories of fermion transport, with relevance for hydrodynamic flow of electrons, neutrons and quarks.
Ultracold atomic Fermi gases present an opportunity to study strongly interacting Fermi systems in a controlled and uncomplicated setting. The ability to tune attractive interactions has led to the discovery of superfluidity in these systems with an extremely high transition temperature, near T/T_F = 0.2. This superfluidity is the electrically neutral analog of superconductivity; however, superfluidity in atomic Fermi gases occurs in the limit of strong interactions and defies a conventional BCS description. For these strong interactions, it is predicted that the onset of pairing and superfluidity can occur at different temperatures. This gives rise to a pseudogap region where, for a range of temperatures, the system retains some of the characteristics of the superfluid phase, such as a BCS-like dispersion and a partially gapped density of states, but does not exhibit superfluidity. By making two independent measurements: the direct observation of pair condensation in momentum space and a measurement of the single-particle spectral function using an analog to photoemission spectroscopy, we directly probe the pseudogap phase. Our measurements reveal a BCS-like dispersion with back-bending near the Fermi wave vector k_F that persists well above the transition temperature for pair condensation.
Many-body fermion systems are important in many branches of physics, including condensed matter, nuclear, and now cold atom physics. In many cases, the interactions between fermions can be approximated by a contact interaction. A recent theoretical a dvance in the study of these systems is the derivation of a number of exact universal relations that are predicted to be valid for all interaction strengths, temperatures, and spin compositions. These equations, referred to as the Tan relations, relate a microscopic quantity, namely, the amplitude of the high-momentum tail of the fermion momentum distribution, to the thermodynamics of the many-body system. In this work, we provide experimental verification of the Tan relations in a strongly interacting gas of fermionic atoms. Specifically, we measure the fermion momentum distribution using two different techniques, as well as the rf excitation spectrum and determine the effect of interactions on these microscopic probes. We then measure the potential energy and release energy of the trapped gas and test the predicted universal relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا