ﻻ يوجد ملخص باللغة العربية
Early detection of changes in the frequency of events is an important task, in, for example, disease surveillance, monitoring of high-quality processes, reliability monitoring and public health. In this article, we focus on detecting changes in multivariate event data, by monitoring the time-between-events (TBE). Existing multivariate TBE charts are limited in the sense that, they only signal after an event occurred for each of the individual processes. This results in delays (i.e., long time to signal), especially if it is of interest to detect a change in one or a few of the processes. We propose a bivariate TBE (BTBE) chart which is able to signal in real time. We derive analytical expressions for the control limits and average time-to-signal performance, conduct a performance evaluation and compare our chart to an existing method. The findings showed that our method is a realistic approach to monitor bivariate time-between-event data, and has better detection ability than existing methods. A large benefit of our method is that it signals in real-time and that due to the analytical expressions no simulation is needed. The proposed method is implemented on a real-life dataset related to AIDS.
Background: All-in-one station-based health monitoring devices are implemented in elder homes in Hong Kong to support the monitoring of vital signs of the elderly. During a pilot study, it was discovered that the systolic blood pressure was incorrect
Positron Emission Tomography (PET) is an imaging technique which can be used to investigate chemical changes in human biological processes such as cancer development or neurochemical reactions. Most dynamic PET scans are currently analyzed based on t
The $DDalpha$-classifier, a nonparametric fast and very robust procedure, is described and applied to fifty classification problems regarding a broad spectrum of real-world data. The procedure first transforms the data from their original property sp
This work is motivated by the Obepine French system for SARS-CoV-2 viral load monitoring in wastewater. The objective of this work is to identify, from time-series of noisy measurements, the underlying auto-regressive signals, in a context where the
Competing risks data are common in medical studies, and the sub-distribution hazard (SDH) ratio is considered an appropriate measure. However, because the limitations of hazard itself are not easy to interpret clinically and because the SDH ratio is