ﻻ يوجد ملخص باللغة العربية
Reliable models of a large variety of open quantum systems can be described by Lindblad master equation. An important property of some open quantum systems is the existence of decoherence-free subspaces. In this paper, we develop tools for constructing stabilizer codes over open quantum systems governed by Lindblad master equation. We apply the developed stabilizer code formalism to the area of quantum metrology. In particular, a strategy to attain the Heisenberg limit scaling is proposed.
Quantum error-correcting codes are used to protect qubits involved in quantum computation. This process requires logical operators, acting on protected qubits, to be translated into physical operators (circuits) acting on physical quantum states. We
There is a rich connection between classical error-correcting codes, Euclidean lattices, and chiral conformal field theories. Here we show that quantum error-correcting codes, those of the stabilizer type, are related to Lorentzian lattices and non-c
Quantum LDPC codes are a promising direction for low overhead quantum computing. In this paper, we propose a generalization of the Union-Find decoder as adecoder for quantum LDPC codes. We prove that this decoder corrects all errors with weight up to
We present an algorithm for manipulating quantum information via a sequence of projective measurements. We frame this manipulation in the language of stabilizer codes: a quantum computation approach in which errors are prevented and corrected in part
We suggest a new protocol for the information reconciliation stage of quantum key distribution based on polar codes. The suggested approach is based on the blind technique, which is proved to be useful for low-density parity-check (LDPC) codes. We sh