ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Complexity Hybrid Precoding Designs for Multiuser mmWave/THz Ultra Massive MIMO Systems

115   0   0.0 ( 0 )
 نشر من قبل Jo\\~ao Pedro Pavia Eng.
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Millimeter-wave and terahertz technologies have been attracting attention from the wireless research community since they can offer large underutilized bandwidths which can enable the support of ultra-high-speed connections in future wireless communication systems. While the high signal attenuation occurring at these frequencies requires the adoption of very large (or the so-called ultra-massive) antenna arrays, in order to accomplish low complexity and low power consumption, hybrid analog/digital designs must be adopted. In this paper we present a hybrid design algorithm suitable for both mmWave and THz multiuser multiple-input multiple-output (MIMO) systems, which comprises separate computation steps for the digital precoder, analog precoder and multiuser interference mitigation. The design can also incorporate different analog architectures such as phase shifters, switches and inverters, antenna selection and so on. Furthermore, it is also applicable for different structures namely, fully connected, arrays of subarrays (AoSA) and dynamic arrays of subarrays (DAoSA), making it suitable for the support of ultra-massive MIMO (UM-MIMO) in severely hardware constrained THz systems. We will show that, by using the proposed approach, it is possible to achieve good trade-offs between spectral efficiency and simplified implementation, even as the number of users and data streams increases.)



قيم البحث

اقرأ أيضاً

Hybrid beamforming is key to achieving energy-efficient 5G wireless networks equipped with massive amount of antennas. Low-resolution data converters bring yet another degree of freedom to energy efficiency for the state-of-the-art 5G transceivers. I n this work, we consider the design of hybrid precoders for massive multiple-input multiple-output (MIMO) channels in millimeter-wave (mmWave) spectrum along with one-bit digital-to-analog converters (DACs) and finite-quantized phase shifters. In particular, we propose an alternating-optimization-based precoder design which recursively computes the covariance of the quantization distortion, and updates the precoders accordingly. Numerical results verify that the achievable rate improves quickly through iterations that involve updates to the weight matrix, distortion covariance of the quantization, and the respective precoders.
136 - Kai Chen , Jing Yang , Xiaohu Ge 2019
The high energy consumption of massive multi-input multi-out (MIMO) system has become a prominent problem in the millimeter wave(mm-Wave) communication scenario. The hybrid precoding technology greatly reduces the number of radio frequency(RF) chains by handing over part of the coding work to the phase shifting network, which can effectively improve energy efficiency. However, conventional hybrid precoding algorithms based on mathematical means often suffer from performance loss and high computational complexity. In this paper, a novel BP-neural-network-enabled hybrid precoding algorithm is proposed, in which the full-digital zero-forcing(ZF) precoding is set as the training target. Considering that signals at the base station are complex, we choose the complex neural network that has a richer representational capacity. Besides, we present the activation function of the complex neural network and the gradient derivation of the back propagation process. Simulation results demonstrate that the performance of the proposed hybrid precoding algorithm can optimally approximate the ZF precoding.
We propose a novel randomized channel sparsifying hybrid precoding (RCSHP) design to reduce the signaling overhead of channel estimation and the hardware cost and power consumption at the base station (BS), in order to fully harvest benefits of frequ ency division duplex (FDD) massive multiple-input multiple-output (MIMO) systems. RCSHP allows time-sharing among multiple analog precoders, each serving a compatible user group. The analog precoder is adapted to the channel statistics to properly sparsify the channel for the associated user group, such that the resulting effective channel (product of channel and analog precoder) not only has enough spatial degrees of freedom (DoF) to serve this group of users, but also can be accurately estimated under the limited pilot budget. The digital precoder is adapted to the effective channel based on the duality theory to facilitate the power allocation and exploit the spatial multiplexing gain. We formulate the joint optimization of the time-sharing factors and the associated sets of analog precoders and power allocations as a general utility optimization problem, which considers the impact of effective channel estimation error on the system performance. Then we propose an efficient stochastic successive convex approximation algorithm to provably obtain Karush-Kuhn-Tucker (KKT) points of this problem.
Hybrid analog-digital (A/D) transceivers designed for millimeter wave (mmWave) systems have received substantial research attention, as a benefit of their lower cost and modest energy consumption compared to their fully-digital counterparts. We furth er improve their performance by conceiving a Tomlinson-Harashima precoding (THP) based nonlinear joint design for the downlink of multiuser multiple-input multiple-output (MIMO) mmWave systems. Our optimization criterion is that of minimizing the mean square error (MSE) of the system under channel uncertainties subject both to realistic transmit power constraint and to the unit modulus constraint imposed on the elements of the analog beamforming (BF) matrices governing the BF operation in the radio frequency domain. We transform this optimization problem into a more tractable form and develop an efficient block coordinate descent (BCD) based algorithm for solving it. Then, a novel two-timescale nonlinear joint hybrid transceiver design algorithm is developed, which can be viewed as an extension of the BCD-based joint design algorithm for reducing both the channel state information (CSI) signalling overhead and the effects of outdated CSI. Moreover, we determine the near-optimal cancellation order for the THP structure based on the lower bound of the MSE. The proposed algorithms can be guaranteed to converge to a Karush-Kuhn-Tucker (KKT) solution of the original problem. The simulation results demonstrate that our proposed nonlinear joint hybrid transceiver design algorithms significantly outperform the existing linear hybrid transceiver algorithms and approach the performance of the fully-digital transceiver, despite its lower cost and power dissipation.
163 - Jingbo Du , Wei Xu , Chunming Zhao 2019
In this paper, we consider hybrid beamforming designs for multiuser massive multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems. Aiming at maximizing the weighted spectral efficiency, we propose one alterna ting maximization framework where the analog precoding is optimized by Riemannian manifold optimization. If the digital precoding is optimized by a locally optimal algorithm, we obtain a locally optimal alternating maximization algorithm. In contrast, if we use a weighted minimum mean square error (MMSE)-based iterative algorithm for digital precoding, we obtain a suboptimal alternating maximization algorithm with reduced complexity in each iteration. By characterizing the upper bound of the weighted arithmetic and geometric means of mean square errors (MSEs), it is shown that the two alternating maximization algorithms have similar performance when the user specific weights do not have big differences. Verified by numerical results, the performance gap between the two alternating maximization algorithms becomes large when the ratio of the maximal and minimal weights among users is very large. Moreover, we also propose a low-complexity closed-form method without iterations. It employs matrix decomposition for the analog beamforming and weighted MMSE for the digital beamforming. Although it is not supposed to maximize the weighted spectral efficiency, it exhibits small performance deterioration compared to the two iterative alternating maximization algorithms and it qualifies as a good initialization for iterative algorithms, saving thereby iterations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا