ﻻ يوجد ملخص باللغة العربية
Algorithms involving Gaussian processes or determinantal point processes typically require computing the determinant of a kernel matrix. Frequently, the latter is computed from the Cholesky decomposition, an algorithm of cubic complexity in the size of the matrix. We show that, under mild assumptions, it is possible to estimate the determinant from only a sub-matrix, with probabilistic guarantee on the relative error. We present an augmentation of the Cholesky decomposition that stops under certain conditions before processing the whole matrix. Experiments demonstrate that this can save a considerable amount of time while having an overhead of less than $5%$ when not stopping early. More generally, we present a probabilistic stopping strategy for the approximation of a sum of known length where addends are revealed sequentially. We do not assume independence between addends, only that they are bounded from below and decrease in conditional expectation.
Spatial statistics often involves Cholesky decomposition of covariance matrices. To ensure scalability to high dimensions, several recent approximations have assumed a sparse Cholesky factor of the precision matrix. We propose a hierarchical Vecchia
We introduce two equations expressing the inverse determinant of a full rank matrix $mathbf{A} in mathbb{R}^{n times n}$ in terms of expectations over matrix-vector products. The first relationship is $|mathrm{det} (mathbf{A})|^{-1} = mathbb{E}_{math
The authors use Riemann-Hilbert methods to compute the constant that arises in the asymptotic behavior of the Airy-kernel determinant of random matrix theory.
Riemann manifold Hamiltonian Monte Carlo (RMHMC) has the potential to produce high-quality Markov chain Monte Carlo-output even for very challenging target distributions. To this end, a symmetric positive definite scaling matrix for RMHMC, which deri
We obtain large gap asymptotics for a Fredholm determinant with a confluent hypergeometric kernel. We also obtain asymptotics for determinants with two types of Bessel kernels which appeared in random matrix theory.