ﻻ يوجد ملخص باللغة العربية
We study single-channel continuum models of one-dimensional insulators induced by periodic potential modulations which are either terminated by a hard wall (the boundary model) or feature a single region of dislocations and/or impurity potentials breaking translational invariance (the interface model). We investigate the universal properties of excess charges accumulated near the boundary and the interface, respectively. We find a rigorous analytic proof for the earlier observed linear dependence of the boundary charge on the phase of the periodic potential modulation as well as extend these results to the interface model. The linear dependence on the phase shows a universal value for the slope, and is intersected by discontinuous jumps by plus or minus one electron charge at the phase points where localized states enter or leave a band of extended states. Both contributions add up such that the periodicity of the excess charge in the phase over a $2pi$-cycle is maintained. While in the boundary model this property is usually associated with the bulk-boundary correspondence, in the interface model a correspondence of scattering state and localized state contributions to the total interface charge is unveiled on the basis of the so-called nearsightedness principle.
The boundary charge that accumulates at the edge of a one-dimensional single-channel insulator is known to possess the universal property, that its change under a lattice shift towards the edge by one site is given by the sum of the average bulk elec
We study fractional boundary charges (FBCs) for two classes of strongly interacting systems. First, we study strongly interacting nanowires subjected to a periodic potential with a period that is a rational fraction of the Fermi wavelength. For suffi
We demonstrate that a large class of one-dimensional quantum and classical exchange models can be described by the same type of graphs, namely Cayley graphs of the permutation group. Their well-studied spectral properties allow us to derive crucial i
We analyze the band topology of acoustic phonons in 2D materials by considering the interplay of spatial and internal symmetries with additional constraints that arise from the physical context. These supplemental constraints trace back to the Nambu-
We study zigzag interfaces between insulating compounds that are isostructural to graphene, specifically II-VI, III-V and IV-IV two-dimensional (2D) honeycomb insulators. We show that these one-dimensional interfaces are polar, with a net density of