ترغب بنشر مسار تعليمي؟ اضغط هنا

Qsun: an open-source platform towards practical quantum machine learning applications

319   0   0.0 ( 0 )
 نشر من قبل Le Ho Bin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Currently, quantum hardware is restrained by noises and qubit numbers. Thus, a quantum virtual machine that simulates operations of a quantum computer on classical computers is a vital tool for developing and testing quantum algorithms before deploying them on real quantum computers. Various variational quantum algorithms have been proposed and tested on quantum virtual machines to surpass the limitations of quantum hardware. Our goal is to exploit further the variational quantum algorithms towards practical applications of quantum machine learning using state-of-the-art quantum computers. This paper first introduces our quantum virtual machine named Qsun, whose operation is underlined by quantum state wave-functions. The platform provides native tools supporting variational quantum algorithms. Especially using the parameter-shift rule, we implement quantum differentiable programming essential for gradient-based optimization. We then report two tests representative of quantum machine learning: quantum linear regression and quantum neural network.



قيم البحث

اقرأ أيضاً

In this paper, we present Fedlearn-Algo, an open-source privacy preserving machine learning platform. We use this platform to demonstrate our research and development results on privacy preserving machine learning algorithms. As the first batch of no vel FL algorithm examples, we release vertical federated kernel binary classification model and vertical federated random forest model. They have been tested to be more efficient than existing vertical federated learning models in our practice. Besides the novel FL algorithm examples, we also release a machine communication module. The uniform data transfer interface supports transferring widely used data formats between machines. We will maintain this platform by adding more functional modules and algorithm examples. The code is available at https://github.com/fedlearnAI/fedlearn-algo.
Recent advances in the area of legal information systems have led to a variety of applications that promise support in processing and accessing legal documents. Unfortunately, these applications have various limitations, e.g., regarding scope or exte nsibility. Furthermore, we do not observe a trend towards open access in digital libraries in the legal domain as we observe in other domains, e.g., economics of computer science. To improve open access in the legal domain, we present our approach for an open source platform to transparently process and access Legal Open Data. This enables the sustainable development of legal applications by offering a single technology stack. Moreover, the approach facilitates the development and deployment of new technologies. As proof of concept, we implemented six technologies and generated metadata for more than 250,000 German laws and court decisions. Thus, we can provide users of our platform not only access to legal documents, but also the contained information.
We present the software framework underlying the NNPDF4.0 global determination of parton distribution functions (PDFs). The code is released under an open source licence and is accompanied by extensive documentation and examples. The code base is com posed by a PDF fitting package, tools to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent) determination, the public release of the NNPDF fitting framework enables a number of phenomenological applications and the production of PDF fits under user-defined data and theory assumptions.
Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum computer to the translation of stochastic methods into the language of quantum theory. This contribution gives a systematic overview of the emerging field of quantum machine learning. It presents the approaches as well as technical details in an accessable way, and discusses the potential of a future theory of quantum learning.
We introduce ProjectQ, an open source software effort for quantum computing. The first release features a compiler framework capable of targeting various types of hardware, a high-performance simulator with emulation capabilities, and compiler plug-i ns for circuit drawing and resource estimation. We introduce our Python-embedded domain-specific language, present the features, and provide example implementations for quantum algorithms. The framework allows testing of quantum algorithms through simulation and enables running them on actual quantum hardware using a back-end connecting to the IBM Quantum Experience cloud service. Through extension mechanisms, users can provide back-ends to further quantum hardware, and scientists working on quantum compilation can provide plug-ins for additional compilation, optimization, gate synthesis, and layout strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا