ﻻ يوجد ملخص باللغة العربية
Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum computer to the translation of stochastic methods into the language of quantum theory. This contribution gives a systematic overview of the emerging field of quantum machine learning. It presents the approaches as well as technical details in an accessable way, and discusses the potential of a future theory of quantum learning.
The following notes are based on lectures delivered at the research school Modeling and Control of Open Quantum Systems (Mod{e}lisation et contr^{o}le des syst`{e}mes quantiques ouverts) at CIRM, Marseille, 16-20 April, 2018, as part of the Trimester
This pair of CAS lectures gives an introduction for accelerator physics students to the framework and terminology of machine learning (ML). We start by introducing the language of ML through a simple example of linear regression, including a probabil
This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies. The text, aimed at g
Boson-sampling is a simplified model for quantum computing that may hold the key to implementing the first ever post-classical quantum computer. Boson-sampling is a non-universal quantum computer that is significantly more straightforward to build th
We describe some basic tools in the spectral theory of Schrodinger operator on metric graphs (also known as quantum graph) by studying in detail some basic examples. The exposition is kept as elementary and accessible as possible. In the later sectio