ﻻ يوجد ملخص باللغة العربية
We investigate the steady-state phases of the dissipative spin-1/2 $J_1$-$J_2$ XYZ model on a two-dimensional square lattice. We show the next-nearest-neighboring interaction plays a crucial role in determining the steady-state properties. By means of the Gutzwiller mean-field factorization, we find the emergence of antiferromag-netic steady-state phases. The existence of such antiferromagnetic steady-state phases in thermodynamic limit is confirmed by the cluster mean-field analysis. Moreover, we find the evidence of the limit cycle phase through the largest quantum Lyapunov exponent in small cluster, and check the stability of the oscillation by calculating the averaged oscillation amplitude up to $4times4$ cluster mean-field approximation.
We investigate the steady-state phase diagram of the dissipative spin-1/2 XYZ model on a two-dimensional triangular lattice, in which each site is coupled to a local environment. By means of cluster mean-field approximation, we find that the steady-s
We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical
We study periodically driven bosonic scalar field theories in the infinite N limit. It is well-known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interac
The quantum phases of 2-leg spin-1/2 ladders with skewed rungs are obtained using exact diagonalization of systems with up to 26 spins and by density matrix renormalization group calculations to 500 spins. The ladders have isotropic antiferromagnetic
We investigate the magnetic properties of spin-$1/2$ charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with e