ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum phases of frustrated 2-leg spin-1/2 ladders with skewed rungs

134   0   0.0 ( 0 )
 نشر من قبل Dayasindhu Dey
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum phases of 2-leg spin-1/2 ladders with skewed rungs are obtained using exact diagonalization of systems with up to 26 spins and by density matrix renormalization group calculations to 500 spins. The ladders have isotropic antiferromagnetic (AF) exchange $J_2 > 0$ between first neighbors in the legs, variable isotropic AF exchange $J_1$ between some first neighbors in different legs, and an unpaired spin per odd-membered ring when $J_1 gg J_2$. Ladders with skewed rungs and variable $J_1$ have frustrated AF interactions leading to multiple quantum phases: AF at small $J_1$, either F or AF at large $J_1$, as well as bond-order-wave phases or reentrant AF (singlet) phases at intermediate $J_1$.

قيم البحث

اقرأ أيضاً

The static structure factor S(q) of frustrated spin-1/2 chains with isotropic exchange and a singlet ground state (GS) diverges at wave vector q_m when the GS has quasi-long-range order (QLRO) with periodicity 2pi/q_m but S(q_m) is finite in bond-ord er-wave (BOW) phases with finite-range spin correlations. Exact diagonalization and density matrix renormalization group (DMRG) calculations of S(q) indicate a decoupled phase with QLRO and q_m = pi/2 in chains with large antiferromagnetic exchange between second neighbors. S(q_m) identifies quantum phase transitions based on GS spin correlations.
We study the quantum phase transitions of frustrated antiferromagnetic Heisenberg spin-1 systems on the 3/4 and 3/5 skewed two leg ladder geometries. These systems can be viewed as arising by periodically removing rung bonds from a zigzag ladder. We find that in large systems, the ground state (gs) of the 3/4 ladder switches from a singlet to a magnetic state for $J_1 ge 1.82$; the gs spin corresponds to ferromagnetic alignment of effective $S = 2$ objects on each unit cell. The gs of antiferromagnetic exchange Heisenberg spin-1 system on a 3/5 skewed ladder is highly frustrated and has spiral spin arrangements. The amplitude of the spin density wave in the 3/5 ladder is significantly larger compared to that in the magnetic state of the 3/4 ladder. The gs of the system switches between singlet state and low spin magnetic states multiple times on tuning $J_1$ in a finite size system. The switching pattern is nonmonotonic as a function of $J_1$, and depends on the system size. It appears to be the consequence of higher $J_1$ favoring higher spin magnetic state and the finite system favoring a standing spin wave. For some specific parameter values, the magnetic gs in the 3/5 system is doubly degenerate in two different mirror symmetry subspaces. This degeneracy leads to spontaneous spin parity and mirror symmetry breaking giving rise to spin current in the gs of the system.
Magnetic excitations in two-leg S=1/2 ladders are studied both experimentally and theoretically. Experimentally, we report on the reflectivity, the transmission and the optical conductivity sigma(omega) of undoped La_x Ca_14-x Cu_24 O_41 for x=4, 5, and 5.2. Using two different theoretical approaches (Jordan-Wigner fermions and perturbation theory), we calculate the dispersion of the elementary triplets, the optical conductivity and the momentum-resolved spectral density of two-triplet excitations for 0.2 <= J_parallel/J_perpendicular <= 1.2. We discuss phonon-assisted two-triplet absorption, the existence of two-triplet bound states, the two-triplet continuum, and the size of the exchange parameters.
The quantum phases in a spin-1 skewed ladder system formed by alternately fusing five- and seven-membered rings is studied numerically using exact diagonalization technique up to 16 spins and using density matrix renormalization group method for larg er system sizes. The ladder has isotropic antiferromagnetic (AF) exchange interaction ($J_2 = 1$) between the nearest neighbor spins along the legs, varying isotropic AF exchange interaction ($J_1$) along the rungs. As a function of $J_1$, the system shows many interesting ground states (gs) which vary from different types of nonmagnetic gs to different kinds of ferrimagnetic gs. Study of different gs properties such as spin gap, spin-spin correlations, spin density and bond order reveal that the system has four distinct phases namely, AF phase at small $J_1$, ferrimagnetic phase with gs spin $S_G = n$ for $1.44 < J_1 < 4.74$ and with $S_G = 2n$ for $J_1 > 5.63$, where $n$ is the number of unit cells, a reentrant nonmagnetic phase at $4.74 < J_1 < 5.44$. The system also shows the presence of spin current at specific $J_1$ values due to simultaneous breaking of both reflection and spin parity symmetries.
We study the ground state phase diagram of a frustrated spin-1/2 four-leg tube. Using a variety of complementary techniques, namely density matrix renormalization group, exact diagonalization, Schwinger boson mean field theory, quantum Monte-Carlo an d series expansion, we explore the parameter space of this model in the regime of all-antiferromagnetic exchange. In contrast to unfrustrated four-leg tubes we uncover a rich phase diagram. Apart from the Luttinger liquid fixed point in the limit of decoupled legs, this comprises several gapped ground states, namely a plaquette, an incommensurate, and an antiferromagnetic quasi spin-2 chain phase. The transitions between these phases are analyzed in terms of total energy and static structure factor calculations and are found to be of (weak) first order. Despite the absence of long range order in the quantum case, remarkable similarities to the classical phase diagram are uncovered, with the exception of the icommensurate regime, which is strongly renormalized by quantum fluctuations. In the limit of large leg exchange the tube exhibits a deconfinement cross-over from gapped magnon like excitations to spinons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا