ﻻ يوجد ملخص باللغة العربية
The idea to distinguish and quantify two important types of uncertainty, often referred to as aleatoric and epistemic, has received increasing attention in machine learning research in the last couple of years. In this paper, we consider ensemble-based approaches to uncertainty quantification. Distinguishing between different types of uncertainty-aware learning algorithms, we specifically focus on Bayesian methods and approaches based on so-called credal sets, which naturally suggest themselves from an ensemble learning point of view. For both approaches, we address the question of how to quantify aleatoric and epistemic uncertainty. The effectiveness of corresponding measures is evaluated and compared in an empirical study on classification with a reject option.
Bayesian Neural Networks (BNNs) place priors over the parameters in a neural network. Inference in BNNs, however, is difficult; all inference methods for BNNs are approximate. In this work, we empirically compare the quality of predictive uncertainty
This work affords new insights into Bayesian CART in the context of structured wavelet shrinkage. The main thrust is to develop a formal inferential framework for Bayesian tree-based regression. We reframe Bayesian CART as a g-type prior which depart
Bayesian optimization is a class of global optimization techniques. It regards the underlying objective function as a realization of a Gaussian process. Although the outputs of Bayesian optimization are random according to the Gaussian process assump
Meta-learning, or learning to learn, offers a principled framework for few-shot learning. It leverages data from multiple related learning tasks to infer an inductive bias that enables fast adaptation on a new task. The application of meta-learning w
Within a Bayesian statistical framework using the standard Skyrme-Hartree-Fcok model, the maximum a posteriori (MAP) values and uncertainties of nuclear matter incompressibility and isovector interaction parameters are inferred from the experimental