ترغب بنشر مسار تعليمي؟ اضغط هنا

Vibrational resonance amplification in a thermo-optic optomechanical nanocavity

249   0   0.0 ( 0 )
 نشر من قبل Guilhem Madiot
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vibrational resonance amplifies a weak low-frequency signal by use of an additional non-resonant high-frequency modulation. The realization of weak signal enhancement in integrated nonlinear optical nanocavities is of great interest for nanophotonic applications where optical signals may be of low power. Here, we report experimental observation of vibrational resonance in a thermo-optically bistable photonic crystal optomechanical resonator with an amplification up to +16 dB. The characterization of the bistability can interestingly be done using a mechanical resonance of the membrane, which is submitted to a strong thermo-elastic coupling with the cavity.



قيم البحث

اقرأ أيضاً

Frequency upconversion is a cornerstone of electromagnetic signal processing, analysis and detection. It is used to transfer energy and information from one frequency domain to another where transmission, modulation or detection is technically easier or more efficient. Optomechanical transduction is emerging as a flexible approach to coherent frequency upconversion; it has been successfully demonstrated for conversion from radio- and microwaves (kHz to GHz) to optical fields. Nevertheless, optomechanical transduction of multi-THz and mid-infrared signals remains an open challenge. Here, we utilize molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32~THz into the visible domain at ambient conditions. The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser and results in Stokes and anti-Stokes upconverted Raman sidebands with sub-natural linewidth, indicating a coherent process. The nanocavity offers 13 orders of magnitude enhancement of upconversion efficiency per molecule compared to free space, with a measured phonon-to-photon internal conversion efficiency larger than $10^{-4}$ per milliwatt of pump power. Our results establish a flexible paradigm for optomechanical frequency conversion using molecular oscillators coupled to plasmonic nanocavities, whose vibrational and electromagnetic properties can be tailored at will using chemical engineering and nanofabrication.
We experimentally demonstrate thermo-optic locking of a semiconductor laser to an integrated toroidal optical microresonator. The lock is maintained for time periods exceeding twelve hours, without requiring any electronic control systems. Fast contr ol is achieved by optical feedback induced by scattering centers within the microresonator, with thermal locking due to optical heating maintaining constructive interference between the cavity and the laser. Furthermore, the optical feedback acts to narrow the laser linewidth, with ultra high quality microtoroid resonances offering the potential for ultralow linewidth on-chip lasers.
We demonstrate a high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A high quality (Q) factor air-slot nanocavity design is employed for high overlap between the optical f ield and graphene sheet. Tuning of graphenes Fermi level up to 0.8 eV enables efficient control of its complex dielectric constant, which allows modulation of the cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. We also observe a controllable resonance wavelength shift close to 2 nm around a wavelength of 1570 nm and a Q factor modulation in excess of three. These observations allow cavity-enhanced measurements of the graphene complex dielectric constant under different chemical potentials, in agreement with a theoretical model of the graphene dielectric constant under gating. This graphene-based nanocavity modulation demonstrates the feasibility of high-contrast, low-power frequency-selective electro-optic nanocavity modulators in graphene-integrated silicon photonic chips.
Suspended optical microresonators are promising devices for on-chip photonic applications such as radio-frequency oscillators, optical frequency combs, and sensors. Scaling up these devices demand the capability to tune the optical resonances in an i ntegrated manner. Here, we design and experimentally demonstrate integrated on-chip thermo-optic tuning of suspended microresonators by utilizing suspended wire bridges and microheaters. We demonstrate the ability to tune the resonance of a suspended microresonator in silicon nitride platform by 9.7 GHz using 5.3 mW of heater power. The loaded optical quality factor (QL ~ 92,000) stays constant throughout the detuning. We demonstrate the efficacy of our approach by completely turning on and off the optical coupling between two evanescently coupled suspended microresonators.
We demonstrate the real-time exciton-manipulation of plexcitonic coupling in monolayer WS2 coupled to a plasmonic nanocavity by immersing into a mixed solution of dichloromethane (DCM) and ethanol. By adjusting the mixture ratio, a continuous tuning of the Rabi splitting energy ranged from 178 meV (in ethanol) to 266 meV (in DCM) is achieved. The results are mainly attributed to the remarkable increase of the proportion of neutral exciton in the monolayer WS2 (from 59% to 100%) as the concentration of DCM is increased. It offers an important stepping stone towards a further study of plexcitonic coupling in layered materials, along with potential applications in quantum information processing and nonlinear optical materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا