ﻻ يوجد ملخص باللغة العربية
We demonstrate the real-time exciton-manipulation of plexcitonic coupling in monolayer WS2 coupled to a plasmonic nanocavity by immersing into a mixed solution of dichloromethane (DCM) and ethanol. By adjusting the mixture ratio, a continuous tuning of the Rabi splitting energy ranged from 178 meV (in ethanol) to 266 meV (in DCM) is achieved. The results are mainly attributed to the remarkable increase of the proportion of neutral exciton in the monolayer WS2 (from 59% to 100%) as the concentration of DCM is increased. It offers an important stepping stone towards a further study of plexcitonic coupling in layered materials, along with potential applications in quantum information processing and nonlinear optical materials.
Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) are extremely attractive materials for optoelectronic applications in the visible and near-IR range. Here, we address for the first time to the best of our knowledge the issue of
Atomically thin layer transition metal dichalcogenides have been intensively investigated for their rich optical properties and potential applications in nano-electronics. In this work, we study the incoherent optical phonon and exciton population dy
Strong spatial confinement and highly reduced dielectric screening provide monolayer transition metal dichalcogenides (TMDCs) with strong many-body effects, thereby possessing optically forbidden excitonic states (i.e., dark excitons) at room tempera
Plasmon decay via the surface or interface is a critical process for practical energy conversion and plasmonic catalysis. However, the relationship between plasmon damping and the coupling between the plasmon and 2D materials is still unclear. The sp
Vibrational resonance amplifies a weak low-frequency signal by use of an additional non-resonant high-frequency modulation. The realization of weak signal enhancement in integrated nonlinear optical nanocavities is of great interest for nanophotonic