ﻻ يوجد ملخص باللغة العربية
We consider the Schr{o}dinger equation with a nondispersive logarithmic nonlinearity and a repulsive harmonic potential. For a suitable range of the coefficients, there exist two positive stationary solutions, each one generating a continuous family of solitary waves. These solutions are Gaussian, and turn out to be orbitally unstable. We also discuss the notion of ground state in this setting: for any natural definition, the set of ground states is empty.
We study the instability of standing-wave solutions $e^{iomega t}phi_{omega}(x)$ to the inhomogeneous nonlinear Schr{o}dinger equation $$iphi_t=-trianglephi+|x|^2phi-|x|^b|phi|^{p-1}phi, qquad inmathbb{R}^N, $$ where $ b > 0 $ and $ phi_{omega} $ is
In this paper, we consider the following three dimensional defocusing cubic nonlinear Schrodinger equation (NLS) with partial harmonic potential begin{equation*}tag{NLS} ipartial_t u + left(Delta_{mathbb{R}^3 }-x^2 right) u = |u|^2 u, quad u|_{t=
We are concerned with the global behavior of the solutions of the focusing mass supercritical nonlinear Schr{o}dinger equation under partial harmonic confinement. We establish a necessary and sufficient condition on the initial data below the ground
This paper intents to present the state of art and recent developments of the optimal transportation theory with many marginals for a class of repulsive cost functions. We introduce some aspects of the Density Functional Theory (DFT) from a mathemati
It is shown that if the C operator for a PT-symmetric Hamiltonian with simple eigenvalues is not unique, then it is unbounded. Apart from the special cases of finite-matrix Hamiltonians and Hamiltonians generated by differential expressions with PT-s