ﻻ يوجد ملخص باللغة العربية
This paper intents to present the state of art and recent developments of the optimal transportation theory with many marginals for a class of repulsive cost functions. We introduce some aspects of the Density Functional Theory (DFT) from a mathematical point of view, and revisit the theory of optimal transport from its perspective. Moreover, in the last three sections, we describe some recent and new theoretical and numerical results obtained for the Coulomb cost, the repulsive harmonic cost and the determinant cost.
We investigate a mathematical theory for the erosion of sediment which begins with the study of a non-linear, parabolic, weighted 4-Laplace equation on a rectangular domain corresponding to a base segment of an extended landscape. Imposing natural bo
We consider the Schr{o}dinger equation with a nondispersive logarithmic nonlinearity and a repulsive harmonic potential. For a suitable range of the coefficients, there exist two positive stationary solutions, each one generating a continuous family
In this article, we study the strong well-posedness, stability and optimal control of an incompressible magneto-viscoelastic fluid model in two dimensions. The model consists of an incompressible Navier--Stokes equation for the velocity field, an evo
In this paper, we obtain some regularities of the free boundary in optimal transportation with the quadratic cost. Our first result is about the $C^{1,alpha}$ regularity of the free boundary for optimal partial transport between convex domains for de
We investigate the large-distance asymptotics of optimal Hardy weights on $mathbb Z^d$, $dgeq 3$, via the super solution construction. For the free discrete Laplacian, the Hardy weight asymptotic is the familiar $frac{(d-2)^2}{4}|x|^{-2}$ as $|x|toin