ﻻ يوجد ملخص باللغة العربية
In this presentation, we analytically derive the dispersion equation for surface waves traveling along reactive boundaries which are periodically modulated in time. In addition, we show numerical results for the dispersion curves and importantly uncover that time-varying boundaries generate band gaps that can be controlled by engineering the modulation spectrum. Furthermore, we also point out an interesting effect of field amplification related to the existence of such band gaps for surface waves. The effect of amplification does not require the synchronization of signal and pumping waves. This unique property is very promising to be applied in surface-wave communications from microwave to optical frequencies.
Accumulation of energy by reactive elements is limited by the amplitude of time-harmonic external sources. In the steady-state regime, all incident power is fully reflected back to the source, and the stored energy does not increase in time, although
Ability to selectively enhance the amplitude and maintain high coherence of the supercontinuum signal with long pulses is gaining significance. In this work an extra degree of freedom afforded by varying the dispersion profile of a waveguide is utili
Inertia effects in magnetization dynamics are theoretically shown to result in a different type of spin waves, i.e. nutation surface spin waves, which propagate at terahertz frequencies in in-plane magnetized ferromagnetic thin films. Considering the
Huygens metasurfaces have demonstrated almost arbitrary control over the shape of a scattered beam, however, its spatial profile is typically fixed at fabrication time. Dynamic reconfiguration of this beam profile with tunable elements remains challe
Hyperbolic metamaterials are materials in which at least one principal dielectric constant is negative. We describe the refractive index surface, and the resulting refraction effects, for a biaxial hyperbolic metamaterial, with principal dielectric c