ﻻ يوجد ملخص باللغة العربية
The linear exponential distribution is a generalization of the exponential and Rayleigh distributions. This distribution is one of the best models to fit data with increasing failure rate (IFR). But it does not provide a reasonable fit for modeling data with decreasing failure rate (DFR) and bathtub shaped failure rate (BTFR). To overcome this drawback, we propose a new record-based transmuted generalized linear exponential (RTGLE) distribution by using the technique of Balakrishnan and He (2021). The family of RTGLE distributions is more flexible to fit the data sets with IFR, DFR, and BTFR, and also generalizes several well-known models as well as some new record-based transmuted models. This paper aims to study the statistical properties of RTGLE distribution, like, the shape of the probability density function and hazard function, quantile function and its applications, moments and its generating function, order and record statistics, Renyi entropy. The maximum likelihood estimators, least squares and weighted least squares estimators, Anderson-Darling estimators, Cramer-von Mises estimators of the unknown parameters are constructed and their biases and mean squared errors are reported via Monte Carlo simulation study. Finally, the real data set based on failure time illustrates the goodness of fit and applicability of the proposed distribution; hence, suitable recommendations are forwarded.
In this paper, we introduce a new three-parameter distribution based on the combination of re-parametrization of the so-called EGNB2 and transmuted exponential distributions. This combination aims to modify the transmuted exponential distribution via
Modelling edge weights play a crucial role in the analysis of network data, which reveals the extent of relationships among individuals. Due to the diversity of weight information, sharing these data has become a complicated challenge in a privacy-pr
In record linkage (RL), or exact file matching, the goal is to identify the links between entities with information on two or more files. RL is an important activity in areas including counting the population, enhancing survey frames and data, and co
Bayesian posterior distributions are widely used for inference, but their dependence on a statistical model creates some challenges. In particular, there may be lots of nuisance parameters that require prior distributions and posterior computations,
In many applications, the dataset under investigation exhibits heterogeneous regimes that are more appropriately modeled using piece-wise linear models for each of the data segments separated by change-points. Although there have been much work on ch