ترغب بنشر مسار تعليمي؟ اضغط هنا

A weighted transmuted exponential distribution with environmental applications

76   0   0.0 ( 0 )
 نشر من قبل Christophe Chesneau
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce a new three-parameter distribution based on the combination of re-parametrization of the so-called EGNB2 and transmuted exponential distributions. This combination aims to modify the transmuted exponential distribution via the incorporation of an additional parameter, mainly adding a high degree of flexibility on the mode and impacting the skewness and kurtosis of the tail. We explore some mathematical properties of this distribution including the hazard rate function, moments, the moment generating function, the quantile function, various entropy measures and (reversed) residual life functions. A statistical study investigates estimation of the parameters using the method of maximum likelihood. The distribution along with other existing distributions are fitted to two environmental data sets and its superior performance is assessed by using some goodness-of-fit tests. As a result, some environmental measures associated with these data are obtained such as the return level and mean deviation about this level.



قيم البحث

اقرأ أيضاً

406 - M. Arshad , M. Khetan , V. Kumar 2021
The linear exponential distribution is a generalization of the exponential and Rayleigh distributions. This distribution is one of the best models to fit data with increasing failure rate (IFR). But it does not provide a reasonable fit for modeling d ata with decreasing failure rate (DFR) and bathtub shaped failure rate (BTFR). To overcome this drawback, we propose a new record-based transmuted generalized linear exponential (RTGLE) distribution by using the technique of Balakrishnan and He (2021). The family of RTGLE distributions is more flexible to fit the data sets with IFR, DFR, and BTFR, and also generalizes several well-known models as well as some new record-based transmuted models. This paper aims to study the statistical properties of RTGLE distribution, like, the shape of the probability density function and hazard function, quantile function and its applications, moments and its generating function, order and record statistics, Renyi entropy. The maximum likelihood estimators, least squares and weighted least squares estimators, Anderson-Darling estimators, Cramer-von Mises estimators of the unknown parameters are constructed and their biases and mean squared errors are reported via Monte Carlo simulation study. Finally, the real data set based on failure time illustrates the goodness of fit and applicability of the proposed distribution; hence, suitable recommendations are forwarded.
We establish exponential bounds for the hypergeometric distribution which include a finite sampling correction factor, but are otherwise analogous to bounds for the binomial distribution due to Leon and Perron (2003) and Talagrand (1994). We also est ablish a convex ordering for sampling without replacement from populations of real numbers between zero and one: a population of all zeros or ones (and hence yielding a hypergeometric distribution in the upper bound) gives the extreme case.
We apply the holonomic gradient method to compute the distribution function of a weighted sum of independent noncentral chi-square random variables. It is the distribution function of the squared length of a multivariate normal random vector. We trea t this distribution as an integral of the normalizing constant of the Fisher-Bingham distribution on the unit sphere and make use of the partial differential equations for the Fisher-Bingham distribution.
The $p_0$ model is an exponential random graph model for directed networks with the bi-degree sequence as the exclusively sufficient statistic. It captures the network feature of degree heterogeneity. The consistency and asymptotic normality of a dif ferentially private estimator of the parameter in the private $p_0$ model has been established. However, the $p_0$ model only focuses on binary edges. In many realistic networks, edges could be weighted, taking a set of finite discrete values. In this paper, we further show that the moment estimators of the parameters based on the differentially private bi-degree sequence in the weighted $p_0$ model are consistent and asymptotically normal. Numerical studies demonstrate our theoretical findings.
203 - MengXu , Qiuping Wang 2021
The edges in networks are not only binary, either present or absent, but also take weighted values in many scenarios (e.g., the number of emails between two users). The covariate-$p_0$ model has been proposed to model binary directed networks with th e degree heterogeneity and covariates. However, it may cause information loss when it is applied in weighted networks. In this paper, we propose to use the Poisson distribution to model weighted directed networks, which admits the sparsity of networks, the degree heterogeneity and the homophily caused by covariates of nodes. We call it the emph{network Poisson model}. The model contains a density parameter $mu$, a $2n$-dimensional node parameter ${theta}$ and a fixed dimensional regression coefficient ${gamma}$ of covariates. Since the number of parameters increases with $n$, asymptotic theory is nonstandard. When the number $n$ of nodes goes to infinity, we establish the $ell_infty$-errors for the maximum likelihood estimators (MLEs), $hat{theta}$ and $hat{{gamma}}$, which are $O_p( (log n/n)^{1/2} )$ for $hat{theta}$ and $O_p( log n/n)$ for $hat{{gamma}}$, up to an additional factor. We also obtain the asymptotic normality of the MLE. Numerical studies and a data analysis demonstrate our theoretical findings. ) for b{theta} and Op(log n/n) for b{gamma}, up to an additional factor. We also obtain the asymptotic normality of the MLE. Numerical studies and a data analysis demonstrate our theoretical findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا