ﻻ يوجد ملخص باللغة العربية
Reward-Weighted Regression (RWR) belongs to a family of widely known iterative Reinforcement Learning algorithms based on the Expectation-Maximization framework. In this family, learning at each iteration consists of sampling a batch of trajectories using the current policy and fitting a new policy to maximize a return-weighted log-likelihood of actions. Although RWR is known to yield monotonic improvement of the policy under certain circumstances, whether and under which conditions RWR converges to the optimal policy have remained open questions. In this paper, we provide for the first time a proof that RWR converges to a global optimum when no function approximation is used.
We prove that the $alpha$-expansion algorithm for MAP inference always returns a globally optimal assignment for Markov Random Fields with Potts pairwise potentials, with a catch: the returned assignment is only guaranteed to be optimal for an instan
Cooperative game is a critical research area in the multi-agent reinforcement learning (MARL). Global reward game is a subclass of cooperative games, where all agents aim to maximize the global reward. Credit assignment is an important problem studie
We prove that the global minimum of the backpropagation (BP) training problem of neural networks with an arbitrary nonlinear activation is given by the ridgelet transform. A series of computational experiments show that there exists an interesting si
We advocate for a practical Maximum Likelihood Estimation (MLE) approach for regression and forecasting, as an alternative to the typical approach of Empirical Risk Minimization (ERM) for a specific target metric. This approach is better suited to ca
Robots can learn the right reward function by querying a human expert. Existing approaches attempt to choose questions where the robot is most uncertain about the humans response; however, they do not consider how easy it will be for the human to ans