ترغب بنشر مسار تعليمي؟ اضغط هنا

VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition

104   0   0.0 ( 0 )
 نشر من قبل Yang Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

End-to-end AutoML has attracted intensive interests from both academia and industry, which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning. Existing AutoML systems, however, suffer from scalability issues when applying to application domains with large, high-dimensional search spaces. We present VolcanoML, a scalable and extensible framework that facilitates systematic exploration of large AutoML search spaces. VolcanoML introduces and implements basic building blocks that decompose a large search space into smaller ones, and allows users to utilize these building blocks to compose an execution plan for the AutoML problem at hand. VolcanoML further supports a Volcano-style execution model - akin to the one supported by modern database systems - to execute the plan constructed. Our evaluation demonstrates that, not only does VolcanoML raise the level of expressiveness for search space decomposition in AutoML, it also leads to actual findings of decomposition strategies that are significantly more efficient than the ones employed by state-of-the-art AutoML systems such as auto-sklearn.

قيم البحث

اقرأ أيضاً

Increasing demand for on-device Automatic Speech Recognition (ASR) systems has resulted in renewed interests in developing automatic model compression techniques. Past research have shown that AutoML-based Low Rank Factorization (LRF) technique, when applied to an end-to-end Encoder-Attention-Decoder style ASR model, can achieve a speedup of up to 3.7x, outperforming laborious manual rank-selection approaches. However, we show that current AutoML-based search techniques only work up to a certain compression level, beyond which they fail to produce compressed models with acceptable word error rates (WER). In this work, we propose an iterative AutoML-based LRF approach that achieves over 5x compression without degrading the WER, thereby advancing the state-of-the-art in ASR compression.
This paper studies the problem of error-runtime trade-off, typically encountered in decentralized training based on stochastic gradient descent (SGD) using a given network. While a denser (sparser) network topology results in faster (slower) error co nvergence in terms of iterations, it incurs more (less) communication time/delay per iteration. In this paper, we propose MATCHA, an algorithm that can achieve a win-win in this error-runtime trade-off for any arbitrary network topology. The main idea of MATCHA is to parallelize inter-node communication by decomposing the topology into matchings. To preserve fast error convergence speed, it identifies and communicates more frequently over critical links, and saves communication time by using other links less frequently. Experiments on a suite of datasets and deep neural networks validate the theoretical analyses and demonstrate that MATCHA takes up to $5times$ less time than vanilla decentralized SGD to reach the same training loss.
Modern computer vision (CV) is often based on convolutional neural networks (CNNs) that excel at hierarchical feature extraction. The previous generation of CV approaches was often based on conditional random fields (CRFs) that excel at modeling flex ible higher order interactions. As their benefits are complementary they are often combined. However, these approaches generally use mean-field approximations and thus, arguably, did not directly optimize the real problem. Here we revisit dual-decomposition-based approaches to CRF optimization, an alternative to the mean-field approximation. These algorithms can efficiently and exactly solve sub-problems and directly optimize a convex upper bound of the real problem, providing optimality certificates on the way. Our approach uses a novel fixed-point iteration algorithm which enjoys dual-monotonicity, dual-differentiability and high parallelism. The whole system, CRF and CNN can thus be efficiently trained using back-propagation. We demonstrate the effectiveness of our system on semantic image segmentation, showing consistent improvement over baseline models.
Predicting molecular conformations (or 3D structures) from molecular graphs is a fundamental problem in many applications. Most existing approaches are usually divided into two steps by first predicting the distances between atoms and then generating a 3D structure through optimizing a distance geometry problem. However, the distances predicted with such two-stage approaches may not be able to consistently preserve the geometry of local atomic neighborhoods, making the generated structures unsatisfying. In this paper, we propose an end-to-end solution for molecular conformation prediction called ConfVAE based on the conditional variational autoencoder framework. Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program. Extensive experiments on several benchmark data sets prove the effectiveness of our proposed approach over existing state-of-the-art approaches. Code is available at url{https://github.com/MinkaiXu/ConfVAE-ICML21}.
Recently, neural approaches to spoken content retrieval have become popular. However, they tend to be restricted in their vocabulary or in their ability to deal with imbalanced test settings. These restrictions limit their applicability in keyword se arch, where the set of queries is not known beforehand, and where the system should return not just whether an utterance contains a query but the exact location of any such occurrences. In this work, we propose a model directly optimized for keyword search. The model takes a query and an utterance as input and returns a sequence of probabilities for each frame of the utterance of the query having occurred in that frame. Experiments show that the proposed model not only outperforms similar end-to-end models on a task where the ratio of positive and negative trials is artificially balanced, but it is also able to deal with the far more challenging task of keyword search with its inherent imbalance. Furthermore, using our system to rescore the outputs an LVCSR-based keyword search system leads to significant improvements on the latter.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا