ﻻ يوجد ملخص باللغة العربية
Text to speech (TTS) is a crucial task for user interaction, but TTS model training relies on a sizable set of high-quality original datasets. Due to privacy and security issues, the original datasets are usually unavailable directly. Recently, federated learning proposes a popular distributed machine learning paradigm with an enhanced privacy protection mechanism. It offers a practical and secure framework for data owners to collaborate with others, thus obtaining a better global model trained on the larger dataset. However, due to the high complexity of transformer models, the convergence process becomes slow and unstable in the federated learning setting. Besides, the transformer model trained in federated learning is costly communication and limited computational speed on clients, impeding its popularity. To deal with these challenges, we propose the federated dynamic transformer. On the one hand, the performance is greatly improved comparing with the federated transformer, approaching centralize-trained Transformer-TTS when increasing clients number. On the other hand, it achieves faster and more stable convergence in the training phase and significantly reduces communication time. Experiments on the LJSpeech dataset also strongly prove our methods advantage.
Transformer-based text to speech (TTS) model (e.g., Transformer TTS~cite{li2019neural}, FastSpeech~cite{ren2019fastspeech}) has shown the advantages of training and inference efficiency over RNN-based model (e.g., Tacotron~cite{shen2018natural}) due
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to
In this paper, a Federated Learning (FL) simulation platform is introduced. The target scenario is Acoustic Model training based on this platform. To our knowledge, this is the first attempt to apply FL techniques to Speech Recognition tasks due to t
Traditional text classifiers are limited to predicting over a fixed set of labels. However, in many real-world applications the label set is frequently changing. For example, in intent classification, new intents may be added over time while others a
In the resource management of wireless networks, Federated Learning has been used to predict handovers. However, non-independent and identically distributed data degrade the accuracy performance of such predictions. To overcome the problem, Federated