ﻻ يوجد ملخص باللغة العربية
We report the crystal structure and magnetic behavior of the $4d^3$ spin-$frac32$ silicophosphate MoP$_3$SiO$_{11}$ studied by high-resolution synchrotron x-ray diffraction, neutron diffraction, thermodynamic measurements, and ab initio band-structure calculations. Our data revise the crystallographic symmetry of this compound and establish its rhombohedral space group ($Rbar 3c$) along with the geometrically perfect honeycomb lattice of the Mo$^{3+}$ ions residing in disconnected MoO$_6$ octahedra. Long-range antiferromagnetic order with the propagation vector $mathbf k=0$ observed below $T_N=6.8$ K is a combined effect of the nearest-neighbor in-plane exchange coupling $Jsimeq 2.6$ K, easy-plane single-ion anisotropy $Dsimeq 2.2 $ K, and a weak interlayer coupling $J_csimeq 0.8$ K. The 12% reduction in the ordered magnetic moment of the Mo$^{3+}$ ions and the magnon gap of $Deltasimeq 7$ K induced by the single-ion anisotropy further illustrate the impact of spin-orbit coupling on the magnetism. Our analysis puts forward single-ion anisotropy as an important ingredient of $4d^3$ honeycomb antiferromagnets despite their nominally quenched orbital moment.
We obtain the most general forms of rank-2 and rank-3 tensors allowed by the crystal symmetries of the honeycomb lattice of edge-sharing octahedra for crystals belonging to different crystallographic point groups, including the monoclinic point group
Motivated by the recent discovery of high temperature antiferromagnet SrRu$_2$O$_6$ and its potential to be the parent of a new superconductor, we construct a minimal $t_{2g}$-orbital model on a honeycomb lattice to simulate its low energy band struc
Magnetoelectric effects in honeycomb antiferromagnet Co4Nb2O9 are investigated on the basis of symmetry analyses of Co ions in trigonal P-3c1 space group. For each Co ion, the possible spin dependence is classified by C3 point-group symmetry. This ac
The honeycomb antiferromagnet Co4Nb2O9 is known to exhibit an interesting magnetoelectric effect that the electric polarization rotates at the twice speed in the opposite direction relative to the rotation of the external magnetic field applied in th
In this paper, we study the spin excitation properties of the frustrated triangular-lattice antiferromagnet Yb(BaBO$_3$)$_3$ with nuclear magnetic resonance. From the spectral analysis, neither magnetic ordering nor spin freezing is observed with tem