ترغب بنشر مسار تعليمي؟ اضغط هنا

Support vector machines for learning reactive islands

395   0   0.0 ( 0 )
 نشر من قبل Shibabrat Naik
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a machine learning framework that can be applied to data sets derived from the trajectories of Hamiltons equations. The goal is to learn the phase space structures that play the governing role for phase space transport relevant to particular applications. Our focus is on learning reactive islands in two degrees-of-freedom Hamiltonian systems. Reactive islands are constructed from the stable and unstable manifolds of unstable periodic orbits and play the role of quantifying transition dynamics. We show that support vector machines (SVM) is an appropriate machine learning framework for this purpose as it provides an approach for finding the boundaries between qualitatively distinct dynamical behaviors, which is in the spirit of the phase space transport framework. We show how our method allows us to find reactive islands directly in the sense that we do not have to first compute unstable periodic orbits and their stable and unstable manifolds. We apply our approach to the Henon-Heiles Hamiltonian system, which is a benchmark system in the dynamical systems community. We discuss different sampling and learning approaches and their advantages and disadvantages.

قيم البحث

اقرأ أيضاً

145 - A. Bethani , A. J. Bevan , J. Hays 2016
We review the concept of support vector machines (SVMs) and discuss examples of their use. One of the benefits of SVM algorithms, compared with neural networks and decision trees is that they can be less susceptible to over fitting than those other a lgorithms are to over training. This issue is related to the generalisation of a multivariate algorithm (MVA); a problem that has often been overlooked in particle physics. We discuss cross validation and how this can be used to improve the generalisation of a MVA in the context of High Energy Physics analyses. The examples presented use the Toolkit for Multivariate Analysis (TMVA) based on ROOT and describe our improvements to the SVM functionality and new tools introduced for cross validation within this framework.
A widely-used tool for binary classification is the Support Vector Machine (SVM), a supervised learning technique that finds the maximum margin linear separator between the two classes. While SVMs have been well studied in the batch (offline) setting , there is considerably less work on the streaming (online) setting, which requires only a single pass over the data using sub-linear space. Existing streaming algorithms are not yet competitive with the batch implementation. In this paper, we use the formulation of the SVM as a minimum enclosing ball (MEB) problem to provide a streaming SVM algorithm based off of the blurred ball cover originally proposed by Agarwal and Sharathkumar. Our implementation consistently outperforms existing streaming SVM approaches and provides higher accuracies than libSVM on several datasets, thus making it competitive with the standard SVM batch implementation.
Sparse classifiers such as the support vector machines (SVM) are efficient in test-phases because the classifier is characterized only by a subset of the samples called support vectors (SVs), and the rest of the samples (non SVs) have no influence on the classification result. However, the advantage of the sparsity has not been fully exploited in training phases because it is generally difficult to know which sample turns out to be SV beforehand. In this paper, we introduce a new approach called safe sample screening that enables us to identify a subset of the non-SVs and screen them out prior to the training phase. Our approach is different from existing heuristic approaches in the sense that the screened samples are guaranteed to be non-SVs at the optimal solution. We investigate the advantage of the safe sample screening approach through intensive numerical experiments, and demonstrate that it can substantially decrease the computational cost of the state-of-the-art SVM solvers such as LIBSVM. In the current big data era, we believe that safe sample screening would be of great practical importance since the data size can be reduced without sacrificing the optimality of the final solution.
Many problems that appear in biomedical decision making, such as diagnosing disease and predicting response to treatment, can be expressed as binary classification problems. The costs of false positives and false negatives vary across application dom ains and receiver operating characteristic (ROC) curves provide a visual representation of this trade-off. Nonparametric estimators for the ROC curve, such as a weighted support vector machine (SVM), are desirable because they are robust to model misspecification. While weighted SVMs have great potential for estimating ROC curves, their theoretical properties were heretofore underdeveloped. We propose a method for constructing confidence bands for the SVM ROC curve and provide the theoretical justification for the SVM ROC curve by showing that the risk function of the estimated decision rule is uniformly consistent across the weight parameter. We demonstrate the proposed confidence band method and the superior sensitivity and specificity of the weighted SVM compared to commonly used methods in diagnostic medicine using simulation studies. We present two illustrative examples: diagnosis of hepatitis C and a predictive model for treatment response in breast cancer.
The support vector machines (SVM) is one of the most widely used and practical optimization based classification models in machine learning because of its interpretability and flexibility to produce high quality results. However, the big data imposes a certain difficulty to the most sophisticated but relatively sl

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا