ترغب بنشر مسار تعليمي؟ اضغط هنا

A Discriminative Semantic Ranker for Question Retrieval

126   0   0.0 ( 0 )
 نشر من قبل Yinqiong Cai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Similar question retrieval is a core task in community-based question answering (CQA) services. To balance the effectiveness and efficiency, the question retrieval system is typically implemented as multi-stage rankers: The first-stage ranker aims to recall potentially relevant questions from a large repository, and the latter stages attempt to re-rank the retrieved results. Most existing works on question retrieval mainly focused on the re-ranking stages, leaving the first-stage ranker to some traditional term-based methods. However, term-based methods often suffer from the vocabulary mismatch problem, especially on short texts, which may block the re-rankers from relevant questions at the very beginning. An alternative is to employ embedding-based methods for the first-stage ranker, which compress texts into dense vectors to enhance the semantic matching. However, these methods often lose the discriminative power as term-based methods, thus introduce noise during retrieval and hurt the recall performance. In this work, we aim to tackle the dilemma of the first-stage ranker, and propose a discriminative semantic ranker, namely DenseTrans, for high-recall retrieval. Specifically, DenseTrans is a densely connected Transformer, which learns semantic embeddings for texts based on Transformer layers. Meanwhile, DenseTrans promotes low-level features through dense connections to keep the discriminative power of the learned representations. DenseTrans is inspired by DenseNet in computer vision (CV), but poses a new way to use the dense connectivity which is totally different from its original design purpose. Experimental results over two question retrieval benchmark datasets show that our model can obtain significant gain on recall against strong term-based methods as well as state-of-the-art embedding-based methods.

قيم البحث

اقرأ أيضاً

Pre-trained model such as BERT has been proved to be an effective tool for dealing with Information Retrieval (IR) problems. Due to its inspiring performance, it has been widely used to tackle with real-world IR problems such as document ranking. Rec ently, researchers have found that selecting hard rather than random negative samples would be beneficial for fine-tuning pre-trained models on ranking tasks. However, it remains elusive how to leverage hard negative samples in a principled way. To address the aforementioned issues, we propose a fine-tuning strategy for document ranking, namely Self-Involvement Ranker (SIR), to dynamically select hard negative samples to construct high-quality semantic space for training a high-quality ranking model. Specifically, SIR consists of sequential compressors implemented with pre-trained models. Front compressor selects hard negative samples for rear compressor. Moreover, SIR leverages supervisory signal to adaptively adjust semantic space of negative samples. Finally, supervisory signal in rear compressor is computed based on condition probability and thus can control sample dynamic and further enhance the model performance. SIR is a lightweight and general framework for pre-trained models, which simplifies the ranking process in industry practice. We test our proposed solution on MS MARCO with document ranking setting, and the results show that SIR can significantly improve the ranking performance of various pre-trained models. Moreover, our method became the new SOTA model anonymously on MS MARCO Document ranking leaderboard in May 2021.
Conversational passage retrieval relies on question rewriting to modify the original question so that it no longer depends on the conversation history. Several methods for question rewriting have recently been proposed, but they were compared under d ifferent retrieval pipelines. We bridge this gap by thoroughly evaluating those question rewriting methods on the TREC CAsT 2019 and 2020 datasets under the same retrieval pipeline. We analyze the effect of different types of question rewriting methods on retrieval performance and show that by combining question rewriting methods of different types we can achieve state-of-the-art performance on both datasets.
121 - Kuan Fang , Long Zhao , Zhan Shen 2020
Search engine has become a fundamental component in various web and mobile applications. Retrieving relevant documents from the massive datasets is challenging for a search engine system, especially when faced with verbose or tail queries. In this pa per, we explore a vector space search framework for document retrieval. Specifically, we trained a deep semantic matching model so that each query and document can be encoded as a low dimensional embedding. Our model was trained based on BERT architecture. We deployed a fast k-nearest-neighbor index service for online serving. Both offline and online metrics demonstrate that our method improved retrieval performance and search quality considerably, particularly for tail
90 - Chen Qu , Hamed Zamani , Liu Yang 2021
In this work, we address multi-modal information needs that contain text questions and images by focusing on passage retrieval for outside-knowledge visual question answering. This task requires access to outside knowledge, which in our case we defin e to be a large unstructured passage collection. We first conduct sparse retrieval with BM25 and study expanding the question with object names and image captions. We verify that visual clues play an important role and captions tend to be more informative than object names in sparse retrieval. We then construct a dual-encoder dense retriever, with the query encoder being LXMERT, a multi-modal pre-trained transformer. We further show that dense retrieval significantly outperforms sparse retrieval that uses object expansion. Moreover, dense retrieval matches the performance of sparse retrieval that leverages human-generated captions.
77 - Christina Lioma 2017
Building machines that can understand text like humans is an AI-complete problem. A great deal of research has already gone into this, with astounding results, allowing everyday people to discuss with their telephones, or have their reading materials analysed and classified by computers. A prerequisite for processing text semantics, common to the above examples, is having some computational representation of text as an abstract object. Operations on this representation practically correspond to making semantic inferences, and by extension simulating understanding text. The complexity and granularity of semantic processing that can be realised is constrained by the mathematical and computational robustness, expressiveness, and rigour of the tools used. This dissertation contributes a series of such tools, diverse in their mathematical formulation, but common in their application to model semantic inferences when machines process text. These tools are principally expressed in nine distinct models that capture aspects of semantic dependence in highly interpretable and non-complex ways. This dissertation further reflects on present and future problems with the current research paradigm in this area, and makes recommendations on how to overcome them. The amalgamation of the body of work presented in this dissertation advances the complexity and granularity of semantic inferences that can be made automatically by machines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا