ﻻ يوجد ملخص باللغة العربية
Context: Th 28 is a Classical T Tauri star in the Lupus 3 cloud which drives an extended bipolar jet. Previous studies of the inner jet identified signatures of rotation around the outflow axis, a key result for theories of jet launching. Thus this is an important source in which to investigate the poorly understood jet launching mechanism. We investigate the morphology and kinematics of the Th 28 micro-jets with the aim of characterizing their structure and outflow activity, using optical integral-field spectroscopy observations obtained with VLT/MUSE. We use spectro-imaging and position-velocity maps to investigate the kinematic and morphological features of the jet, and obtain a catalogue of emission lines in which the jet is visible. A Lucy-Richardson deconvolution procedure is used to differentiate the structure of the inner micro-jet region. Spatial profiles extracted perpendicular to the jet axis are fitted to investigate the jet width, opening angle and the evolution of the jet axis. We confirm the previously identified knot HHW$_{2}$ within the red-shifted jet and identify three additional knots in each lobe for the first time. We also find [O III]$lambda$5007 emission from the blue-shifted micro-jet including the knot closest to the star. Proper motions for the innermost knots on each side are estimated and we show that new knots are ejected on an approximate timescale of 10-15 years. The jet axis centroids show a point-symmetric wiggle within the inner portion of both micro-jets indicating precession. We use the jet shape to measure a precession period of 8 years, with a half-opening angle < 0.6$^{circ}$. This may provide an alternative explanation for the rotation signatures previously reported. We find the jet shape to be compatible with precession due to a brown dwarf companion orbiting at a separation $leq$ 0.3 au.
Recently, differences in Doppler shifts across the base of four close classical T Tauri star jets have been detected with the HST in optical and near-ultraviolet (NUV) emission lines, and these Doppler shifts were interpreted as rotation signatures u
We present three dimensional relativistic hydrodynamical simulations of a precessing jet interacting with the intracluster medium and compare the simulated jet structure with the observed structure of the Hydra A northern jet. For the simulations, we
Jets and outflows are thought to play important roles in regulating star formation and disk evolution. HD 163296 is a well-studied Herbig Ae star that hosts proto-planet candidates, a protoplanetary disk, a protostellar jet, and a molecular outflow,
The quasar B0605-085 (OH 010) shows a hint for probable periodical variability in the radio total flux-density light curves. We study the possible periodicity of B0605-085 in the total flux-density, spectra and opacity changes in order to compare it
Not all stars exhibiting the optical spectral characteristics of B[e] stars share the same evolutionary stage. The Galactic B[e] star MWC 137 is a prime example of an object with uncertain classification, with previous work suggesting pre- and post-m