ترغب بنشر مسار تعليمي؟ اضغط هنا

A possible jet precession in the periodic quasar B0605-085

140   0   0.0 ( 0 )
 نشر من قبل Nadia Kudryavtseva
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quasar B0605-085 (OH 010) shows a hint for probable periodical variability in the radio total flux-density light curves. We study the possible periodicity of B0605-085 in the total flux-density, spectra and opacity changes in order to compare it with jet kinematics on parsec scales. We have analyzed archival total flux-density variability at ten frequencies (408 MHz, 4.8 GHz, 6.7 GHz, 8 GHz, 10.7 GHz, 14.5 GHz, 22 GHz, 37 GHz, 90 GHz, and 230 GHz) together with the archival high-resolution very long baseline interferometry data at 15 GHz from the MOJAVE monitoring campaign. Using the Fourier transform and discrete autocorrelation methods we have searched for periods in the total flux-density light curves. In addition, spectral evolution and changes of the opacity have been analyzed. We found a period in multi-frequency total flux-density light curves of 7.9+-0.5 yrs. Moreover, a quasi-stationary jet component C1 follows a prominent helical path on a similar time scale of 8 years. We have also found that the average instantaneous speeds of the jet components show a clear helical pattern along the jet with a characteristic scale of 3 mas. Taking into account average speeds of jet components, this scale corresponds to a time scale of about 7.7 years. Jet precession can explain the helical path of the quasi-stationary jet component C1 and the periodical modulation of the total flux-density light curves. We have fitted a precession model to the trajectory of the jet component C1, with a viewing angle phi=2.6+-2.2 degrees, aperture angle of the precession cone Omega=23.9+-1.9 degrees and fixed precession period (in the observers frame) P = 7.9 yrs.



قيم البحث

اقرأ أيضاً

We analyze X-ray light curves of the blazar Mrk 421 obtained from the Soft X-ray Imaging Telescope and the Large Area X-Ray Proportional Counter instrument onboard the Indian space telescope $AstroSat$ and archival observations from $Swift$. We show that the X-ray power spectral density (PSD) is a piece-wise power-law with a break, i.e., the index becomes more negative below a characteristic break-timescale. Galactic black hole X-ray binaries and Seyfert galaxies exhibit a similar characteristic timescale in their X-ray variability that is proportional to their respective black hole mass. X-rays in these objects are produced in the accretion disk or corona. Hence, such a timescale is believed to be linked to the properties of the accretion flow. Any relation observed between events in the accretion disk and those in the jet can be used to characterize the disk-jet connection. However, evidence of such link have been scarce and indirect. Mrk 421 is a BL Lac object which has a prominent jet pointed towards us and a weak disk emission, and it is assumed that most of its X-rays are generated in the jet. Hence, existence of the break in its X-ray PSD may indicate that changes in the accretion disk, which may be the source of the break timescale are translating into the jet, where the X-rays are produced.
78 - Jun Yang 2020
Highly accreting quasars are quite luminous in the X-ray and optical regimes. While, they tend to become radio quiet and have optically thin radio spectra. Among the known quasars, IRAS F11119+3257 is a supercritical accretion source because it has a bolometric luminosity above the Eddington limit and extremely powerful X-ray outflows. To probe its radio structure, we investigated its radio spectrum between 0.15 and 96.15 GHz and performed very-long-baseline interferometric (VLBI) observations with the European VLBI Network (EVN) at 1.66 and 4.93 GHz. The deep EVN image at 1.66 GHz shows a two-sided jet with a projected separation about two hundred parsec and a very high flux density ratio of about 290. Together with the best-fit value of the integrated spectral index of -1.31+/-0.02 in the optically thin part, we infer that the approaching jet has an intrinsic speed at least 0.57 times of the light speed. This is a new record among the known all kinds of super-Eddington accreting sources and unlikely accelerated by the radiation pressure. We propose a scenario in which IRAS F11119+3257 is an unusual compact symmetric object with a small jet viewing angle and a radio spectrum peaking at 0.53+/-0.06 GHz mainly due to the synchrotron self-absorption.
We report the detection of a probable $gamma$-ray quasi-periodic oscillation (QPO) of around 314 days in the monthly binned 0.1 -- 300 GeV $gamma$-ray {it Fermi}-LAT light curve of the well known BL Lac blazar OJ 287. To identify and quantify the QPO nature of the $gamma$-ray light curve of OJ 287, we used the Lomb-Scargle periodogram (LSP), REDFIT, and weighted wavelet z-transform (WWZ) analyses. We briefly discuss possible emission models for radio-loud active galactic nuclei (AGN) that can explain a $gamma$-ray QPO of such a period in a blazar. Reports of changes in the position of quasi-stationary radio knots over a yearly timescale as well as a strong correlation between gamma-ray and mm-radio emission in previous studies indicate that the signal is probably associated with these knots.
We present the first multi-frequency VLBA study of the quasar 0850+581 which appears to have a two-sided relativistic jet.Apparent velocity in the approaching jet changes from 3.4c to 7c with the separation from the core. The jet-to-counter-jet ratio of about 5 and apparent superluminal velocities suggest that the observing angle of the inner jet is $leq33^circ$. It is likely that this orientation significantly changes downstream due to an interaction of the jet with the surrounding medium, signs of this are seen in polarization. A dense inhomogeneous Faraday screen is detected in the innermost regions of this quasar. We suggest that there is a presence of ionized gas in its nucleus, which might be responsible for the free-free absorption of the synchrotron emission in the jet and counter-jet at frequencies below 8.4~GHz. The experiment makes use of slowly varying instrumental polarisation factors (polarization leakage or D-terms) in time. We report application of the D-term connection technique for the calibration of an absolute orientation of electric vector position angle (EVPA) observed by VLBA at 4.6, 5.0, 8.1, 8.4, 15.4, 22.3, and 43.3 GHz bands during the 2007--2011.
The object 4C 71.07 is a high-redshift blazar whose spectral energy distribution shows a prominent big blue bump and a strong Compton dominance. We present the results of a two-year multiwavelength campaign led by the Whole Earth Blazar Telescope (WE BT) to study both the quasar core and the beamed jet of this source. The WEBT data are complemented by ultraviolet and X-ray data from Swift, and by gamma-ray data by Fermi. The big blue bump is modelled by using optical and near-infrared mean spectra obtained during the campaign, together with optical and ultraviolet quasar templates. We give prescriptions to correct the source photometry in the various bands for the thermal contribution, in order to derive the non-thermal jet flux. The role of the intergalactic medium absorption is analysed in both the ultraviolet and X-ray bands. We provide opacity values to deabsorb ultraviolet data, and derive a best-guess value for the hydrogen column density through the analysis of X-ray spectra. We estimate the disc and jet bolometric luminosities, accretion rate, and black hole mass. Light curves do not show persistent correlations among flux changes at different frequencies. We study the polarimetric behaviour and find no correlation between polarisation degree and flux, even when correcting for the dilution effect of the big blue bump. Similarly, wide rotations of the electric vector polarisation angle do not seem to be connected with the source activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا