ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fourier formalism for relativistic axion-photon conversion, with astrophysical applications

65   0   0.0 ( 0 )
 نشر من قبل M.C. David Marsh
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the weak mixing of photons and relativistic axion-like particles (axions) in plasmas with background magnetic fields, ${bf B}$. We show that, to leading order in the axion-photon coupling, the conversion probability, $P_{gamma to a}$, is given by the one-dimensional power spectrum of the magnetic field components perpendicular to the particle trajectory. Equivalently, we express $P_{gamma to a}$ as the Fourier transform of the magnetic field autocorrelation function, and establish a dictionary between properties of the real-space magnetic field and the energy-dependent conversion probability. For axions more massive than the plasma frequency, ($m_a>omega_{rm pl}$), we use this formalism to analytically solve the problem of perturbative axion-photon mixing in a general magnetic field. In the general case where $m_a/omega_{rm pl}$ varies arbitrarily along the trajectory, we show that a naive application of the standard formalism for resonant conversion can give highly inaccurate results, and that a careful calculation generically gives non-resonant contributions at least as large as the resonant contribution. Furthermore, we demonstrate how techniques based on the Fast Fourier Transform provide a new, highly efficient numerical method for calculating axion-photon mixing. We briefly discuss magnetic field modelling in galaxy clusters in the light of our results and argue, in particular, that a recently proposed regular model used for studying axion-photon mixing (specifically applied to the Perseus cluster) is inconsistent with observations. Our formalism suggest new methods to search for imprints of axions, and will be important for spectrographs with percent level sensitivity, which includes existing X-ray observations by Chandra as well as the upcoming Athena mission.



قيم البحث

اقرأ أيضاً

Axion dark matter can resonantly convert to photons in the magnetosphere of neutron stars, possibly giving rise to radio signals observable on Earth. This method for the indirect detection of axion dark matter has recently received significant attent ion in the literature. The calculation of the radio signal is complicated by a number of effects; most importantly, the gravitational infall of the axions onto the neutron star accelerates them to semi-relativistic speed, and the neutron star magnetosphere is highly anisotropic. Both of these factors complicate the calculation of the conversion of axions to photons. In this work, we present the first fully three-dimensional calculation of the axion-photon conversion in highly magnetised anisotropic media. Depending on the axion trajectory, this calculation leads to orders-of-magnitude differences in the conversion compared to the simplified one-dimensional calculation used so far in the literature, altering the directionality of the produced photons. Our results will have important implications for the radio signal one would observe in a telescope.
The QCD axion or axion-like particles are candidates of dark matter of the universe. On the other hand, axion-like excitations exist in certain condensed matter systems, which implies that there can be interactions of dark matter particles with conde nsed matter axions. We discuss the relationship between the condensed matter axion and a collective spin-wave excitation in an anti-ferromagnetic insulator at the quantum level. The conversion rate of the light dark matter, such as the elementary particle axion or hidden photon, into the condensed matter axion is estimated for the discovery of the dark matter signals.
We point out that stars in the mass window ~ 8-12 Msun can serve as sensitive probes of the axion-photon interaction, g_{Agammagamma}. Specifically, for these stars axion energy losses from the helium-burning core would shorten and eventually elimina te the blue loop phase of the evolution. This would contradict observational data, since the blue loops are required, e.g., to account for the existence of Cepheid stars. Using the MESA stellar evolution code, modified to include the extra cooling, we conservatively find g_{Agammagamma} <~ 0.8 * 10^{-10} GeV^{-1}, which compares favorably with the existing bounds.
It is pointed out that there exist a few problems to be overcome toward an observable sub-eV QCD axion in superstring compactification. We give a general expression for the axion decay constant. For a large domain wall number $N_{DW}$, the axion deca y constant can be substantially lowered from a generic value of a scalar singlet VEV. The Yukawa coupling structure in the recent $Z_{12-I}$ model is studied completely, including the needed nonrenormalizable terms toward realistic quark and lepton masses. In this model we find an approximate global symmetry and vacuum so that a QCD axion results but its decay constant is at the GUT scale. The axion-photon-photon coupling is calculated for a realistic vacuum satisfying the quark and lepton mass matrix conditions. It is the first time calculation of $c_{agammagamma}$ in realistic string compactifications: $c_{agammagamma}={5/3}-1.93simeq -0.26$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا