ترغب بنشر مسار تعليمي؟ اضغط هنا

String compactification, QCD axion and axion-photon-photon coupling

107   0   0.0 ( 0 )
 نشر من قبل Ian-Woo Kim
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is pointed out that there exist a few problems to be overcome toward an observable sub-eV QCD axion in superstring compactification. We give a general expression for the axion decay constant. For a large domain wall number $N_{DW}$, the axion decay constant can be substantially lowered from a generic value of a scalar singlet VEV. The Yukawa coupling structure in the recent $Z_{12-I}$ model is studied completely, including the needed nonrenormalizable terms toward realistic quark and lepton masses. In this model we find an approximate global symmetry and vacuum so that a QCD axion results but its decay constant is at the GUT scale. The axion-photon-photon coupling is calculated for a realistic vacuum satisfying the quark and lepton mass matrix conditions. It is the first time calculation of $c_{agammagamma}$ in realistic string compactifications: $c_{agammagamma}={5/3}-1.93simeq -0.26$.



قيم البحث

اقرأ أيضاً

We point out that stars in the mass window ~ 8-12 Msun can serve as sensitive probes of the axion-photon interaction, g_{Agammagamma}. Specifically, for these stars axion energy losses from the helium-burning core would shorten and eventually elimina te the blue loop phase of the evolution. This would contradict observational data, since the blue loops are required, e.g., to account for the existence of Cepheid stars. Using the MESA stellar evolution code, modified to include the extra cooling, we conservatively find g_{Agammagamma} <~ 0.8 * 10^{-10} GeV^{-1}, which compares favorably with the existing bounds.
96 - Shu-Yu Ho , Kenichi Saikawa , 2018
We revisit the adiabatic conversion between the QCD axion and axion-like particle (ALP) at level crossing, which can occur in the early universe as a result of the existence of a hypothetical mass mixing. This is similar to the Mikheyev-Smirnov-Wolfe nstein effect in neutrino oscillations. After refining the conditions for the adiabatic conversion to occur, we focus on a scenario where the ALP produced by the adiabatic conversion of the QCD axion explains the observed dark matter abundance. Interestingly, we find that the ALP decay constant can be much smaller than the ordinary case in which the ALP is produced by the realignment mechanism. As a consequence, the ALP-photon coupling is enhanced by a few orders of magnitude, which is advantageous for the future ALP and axion-search experiments using the ALP-photon coupling.
We investigate the prospect of an alternative laboratory-based search for the coupling of axions and axion-like particles to photons. Here, the collision of two laser beams resonantly produces axions, and a signal photon is detected after magnetic re conversion, as in light-shining-through-walls (LSW) experiments. Conventional searches, such as LSW or anomalous birefrigence measurements, are most sensitive to axion masses for which substantial coherence can be achieved; this is usually well below optical energies. We find that using currently available high-power laser facilities, the bounds that can be achieved by our approach outperform traditional LSW at axion masses between $0.5-6$ eV, set by the optical laser frequencies and collision angle. These bounds can be further improved through coherent scattering off laser substructures, probing axion-photon couplings down to $g_{agammagamma}sim 10^{-8} {text{GeV}^{-1}}$, comparable with existing CAST bounds. Assuming a day long measurement per angular step, the QCD axion band can be reached.
The QCD axion or axion-like particles are candidates of dark matter of the universe. On the other hand, axion-like excitations exist in certain condensed matter systems, which implies that there can be interactions of dark matter particles with conde nsed matter axions. We discuss the relationship between the condensed matter axion and a collective spin-wave excitation in an anti-ferromagnetic insulator at the quantum level. The conversion rate of the light dark matter, such as the elementary particle axion or hidden photon, into the condensed matter axion is estimated for the discovery of the dark matter signals.
We present the supernova constraints on an axion-photon-dark photon coupling, which can be the leading coupling to dark sector models and can also lead to dramatic changes to axion cosmology. We show that the supernova bound on this coupling has two unusual features. One occurs because the scattering that leads to the trapping regime converts axions and dark photons into each other. Thus, if one of the two new particles is sufficiently massive, both production and scattering become suppressed and the bounds from bulk emission and trapped (area) emission both weaken exponentially and do not intersect. The other unusual feature occurs because for light dark photons, longitudinal modes couple more weakly than transverse modes do. Since the longitudinal mode is more weakly coupled, it can still cause excessive cooling even if the transverse mode is trapped. Thus, the supernova constraints for massive dark photons look like two independent supernova bounds super-imposed on top of each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا